Reg No.:

Name:

Duration: 1Hour

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSIT

Sixth Semester B. Tech Degree Supplementary Examination May 2023 (2019, Scheme

Course Code: CET308 Course name: COMPREHENSIVE COURSE WORK

Max. Marks: 50

Instructions: (1) Each question carries one mark. No negative marks for wrong answers (2) Total number of questions: 50 (3) All questions are to be answered. Each question will be followed by 4 possible answers of which only ONE is correct. (4) If more than one option is chosen, it will not be considered for valuation.

1. The major and minor principal stresses at a point are 3MPa and -3Mpa respectively, then maximum shear stress at the point is

u zero v swipa v o wipa u y v	a) ze	tero b)	3 Mpa	c)	6 Mpa	d)	9 Mpa
---	-------	---------	-------	----	-------	----	-------

2. For an isotropic material, the relationship between the Young's modulus€, shear modulus(G) and Poisson's ratio µ is given by

3.				$G = \frac{E}{2(1+\mu)}$ ticity for a perfect			d)	$G=\frac{E}{2(1+2\mu)}$
	,	ero		unity		•	d)	None of these
4.	The ratio of lateral strain to the linear strain is called							
		lodulus of asticity		Modulus of rigidity	c)	Bulk modulus	d)	Poisson's ratio
5.	The va	lue of Poisson	's ra	tio for cork and co	oncre	ete are		
	a) 0.	1 and zero	b)	zero and 0.5	c)	zero and 0.1	d)	0.5 and zero
6.	If the s	hear force alor	ng a	section of a beam	is ze	ero, the bending m	oment at t	he section is
	a) ze	ero	b)	maximum	c)	minimum	d)	average of maximum and minimum
7.	Flexura express		bean	n having Modulus	s of I	Elasticity E and m	oment of i	
~	a) El	[b)	$\frac{E}{L}$	c)	$\frac{I}{E}$	d)	None of these
8.	Maxim	um strain ener	gy s	tored in a material	upt	o the elastic limit	is called	
						Modulus of resilience	d)	Bulk resilence

F

1100CET308052301

13

-

ă

.

9	The bending moment diagram of a cantilever beam of length <i>l</i> carrying concentrated load W at the first and will be	t
	the free end will be a) a right angled b) an isosceles c) an equilateral d) a rectangle triangle triangle triangle	
10.	The ratio between fully plastic moment and yield moment of a rectangular section in flexure is	
	a) $\frac{3}{2}$ b) $\frac{2}{3}$ c) 1 d) 2	
11	For a fluid, the shear stress was found to be directly proportional to the velocity gradient. The	
	fluid is classified as a) Non – b) Ideal Fluid c) Newtonian d) Thixotropic Fluid Newtonian Fluid	
12	The total pressure on the surface of a vertical sluice gate 2m x 1m with its top 2m surface 0.5m	1
	below the water level will be, a) 19.62 Kn b) 19 Kn c) 15.62 Kn d) 17 Kn	
13	At a certain point, the absolute pressure and atmospheric pressure is given by 850 mm of mercury and 700 mm of mercury respectively. What is the value of gauge pressure (mm of mercury) at that point?	
	a) 100 b) 50 c) 200 d) 150	
14	A floating body will remain in stable equilibrium if the metacentre is	
	a) above the b) above the c) below the d) below the centre of centre of centre of gravity gravity	
15	Which of the following laws states that pressure or intensity of pressure at a point in static fluid is equal in all directions?	d
	a) Darcy's law b) Newton's law c) Hydrostatic d) Pascal's law law	
16	The height of hydraulic jump is equal to	
	a) sequent depth b) difference in c) difference in d) initial depth conjugate alternate depths depths	
17	What is the cross-sectional area (in square meter) of the channel, if its hydraulic radius and	
	wetted perimeter is given as 300 cm and 860 cm respectivelya) 10.5b) 15.6c) 25.8d) 32.4	
*18	Which of the following expression represents the critical state of flow in non-rectangular	
	a) $y_c = \left(\frac{q^2}{g}\right)^{1/3}$ b) $\frac{Q^2}{g} = \frac{A^3}{T}$ c) $\frac{Q^3}{g} = \frac{A^2}{T}$ d) $\frac{Q^2}{g} = \frac{A}{T^3}$	
19	A rectangular channel will be most economical when the flow depth to channel bottom width in the ratio : a) 1:2 b) 2:1 c) 1:4 d) 1:1	is
20	A horizontal pipe carrying water has velocities of 2m/sec and 1m/sec at the left and right ends The pressure head difference is	
	a) g b) $\frac{1}{g}$ c) $\frac{1.5}{g}$ d) $1.5 g$	
	g g	

1100CET308052301

14

ă

	21	Erro	or due to bad rang	ing	is				
		a)	Compensating	b)	Cumulative positive	c)	Cumulative negative	d)	Both (b) and (c)
	22	Ifq	uadrantal bearing	ofa	line is N35W, the	en wl	hole circle bearing	; is	
		a)	325°	b)	205°	c)	215°	d)	315°
	23	Isog	gonic lines are line	es pa	assing through				
	.24	a) Sen	Point having zero dip	,	Point having same dip be can be increase	í	Point of zero declination	d)	Point having same declination
	12.1	a)	Decreasing radius of curvature of the tube		Decreasing length of the bubble	-	Increasing diameter of the tube	d)	Increasing viscosity of the liquid
	25		en "h" is the diffe			en ex	tremities of chain	length "l"	', then the
		corr a)	rection for slope r $\frac{h}{l}$	equi b)	red is $\frac{h^2}{l}$	c)	$\frac{h^2}{2l}$	d)	$\frac{h}{2l}$
	26	The	horizontal distan	nce t	between any two c	onse	cutive contours is	called	
		a)	Vertical equivalent		horizontal equivalent	í	Contour interval	d)	Contour gradient
	27	A c			one another on ma	p on	ly in case of		
	20	a)	A vertical cliff	,	-	<i>,</i>	A ridge	d)	An overhanging cliff
	28		-	•	observation of w	•	•		
		a)	$\sqrt{\frac{E_s}{\sqrt{w}}}$	b)	$\sqrt{\frac{E_s}{w}}$	c)	$\frac{E_s}{\sqrt{w}}$	d)	None of these
	29 1	The	N		N		GPS to determine	its positio	on precisely
		a)	2	b)	3	c)	4	d)	24
	30	Wh	ich of the following	ng ir	dicates the princip	ple o	f GPS		
		a)	Trilateration	b)	Resection	c)	Trisection	d)	Traversing
	31	If p	orosity of soil san	nple	is 20%, the void r	atio	ă		*
		a)	0.20	b)	0.80	c)	1.00	d)	0.25
	32	satu		(rou	nded off to the nea	arest	-		e degree of 75.8
	33	a) The		,	79 layey soils is giver		84.5	d)	13.0
•		a)	Plasticity Index/Flow Index		Liquid Limit/Plastic Limit	c)	Liquidity Index/Plastic Limit	d)	Plastic Limit/Liquidity Index

1100CET308052301

14

-

ă

34	The	e consistency of sa	atura	ted cohesive soil	is aff	fected by		
	a)	Water content	b)	Particle size distribution	c)	Density index	d)	Coefficient of permeability
35	As	per Indian standa	rd cla	assification system	n, an	expression for A-	Line is	
	a)	$Ip = 0.73(W_L-20)$	b)	$Ip = 0.70(W_L-20)$	c)	$Ip = 0.73(W_L-10)$	d)	$Ip = 0.70(W_L-10)$
36	acc	ording to IS class	ifica	tion, the soil is rep	prese	astic limit of 20. A ented by the letter	symbols	•
•					,			
37		stressgradientQuick sand condition occurs whena)The upwardc)The upwardd)The upwarda)The void ratiob)The upwardc)The upwardd)The upwardof the soilseepageseepageseepageseepage pressurebecomes 1.0pressure in soilpressure in soilin soil becomesbecomes zerobecomes equalequal to theto the saturatedsubmerged unitunit weight ofweight of the soil						
38	a) Out	stress		gradient	c)	Cohesion	d)	Stability number
	a)	The void ratio of the soil		The upward seepage pressure in soil	c)	seepage pressure in soil becomes equal to the saturated	d)	seepage pressure in soil becomes equal to the submerged unit
39	Roo	ot time method is	used	for determining				
	a)	Time factor	b)	Coefficient of consolidation	c)	Coefficient of compressibility	d)	Coefficient of volume compressibility
40	In a	a compaction test,	as th	e compaction effe	ort is	increased, the op	timum mo	isture content
	a)	Decreases	,	Remains same	c)	Increases	d)	Increases first there after decreases
, 41					ter in	n the mix tends to	rise to the	surface while
	a)	cing and compact bleeding	b)	creep		Segregation	d)	Shrinkage
42	Fac	tor of safety of ste		or steel as compar	ed to			
	a)	same	b)	lower	c)	Higher	d)	None of these
43	Fin	eness of cement is	s test	ed by				•
	a)	Air permeability method	2	Le-Chatelier method	c)	Vicat's apparatus	d)	All of these
44		rkability of concr		-				
	a)	Vicat apparatus test	b)	Slump test	c)	Minimum void method	d)	Talbot Richard test
45			to d	enote the finishing	g of	mortar joints of ei	ther stone	masonry or brick
	mas a)	sonry plastering	b)	pointing	c)	painting	d)	grouting

			1100CET308	80523	01		HE STATE	
46	Which of the follow		× (= (3015123) =) =					
	a) Tri calcium silicate	b)	Di calcium silicate	c)	Tri calcium aluminate	d)	Di calcium	
47	Dummy activities a	re use	d to				OUTHURU T	
	a) Determine the critical path	b)	Determine the project completion time	c)	Maintain the required network	d)	None of these	
- 48	The time by which an activity completion time can be delayed without affecting the start of the succeeding activities is known as							
	a) Duration	b)	Total float	c)	Free float	d)	Interfering float	
49	Which of the follow	ing is	not a type of cor	ntract				
	a) Item rate contract	b)	Open contract	c)	Percentage rate contract	d)	Lump sum contract	
50	The occurrence of the	he cor	npletion of an act	tivity			contract	
	a) Head event	b)	Tail event	c)	Dual role event	d)	None of these	

-