Reg N	lo.:	×			Naı	ne:	70	# ST 2			
		APJ ABDU	JL K	ALAM TECHNO	LOG	ICAL UNIVERS	TY	30/5/1			
	Sixth	Semester B.Tech	Degr	ee Supplementary	Exam	ination May 2023	(201	Scheme)			
							1	PUTHURUTH			
Max. M	Iarks:		nam	Course Code e: COMPREHE			ORK	Duration: 1Hou			
Instruction	ons:	(2) Total number of (3) All questions are which only ONE is	f quest e to be correc	answered. Each ques	stion wi	ll be followed by 4 po		answers of			
1.	Wh	ich data structure	is use	ed to store the undo	histo	ry in a web browse	er?				
	a)	Stack	b)	Queue	c)	Linked List	d)	Hash table			
2.	Wh	en a pop() operati	on is	called on an empty	queu	e, what is the cond	ition	called?			
	a)	Overflow	b)	Underflow	c)	Syntax Error	d)	Garbage Value			
3.		-		e following eleme				Which traversal			
	a)	Pre-order	b)	In-order	c)	Post-order	d)	Level order			
4.	Wh	ich sorting algorit	hm h	as a time complexi	ity of C	O(n log n) in the av	erag	e and worst case?			
	a)	Bubble sort	b)	Insertion sort	c)	Quick sort	d)	Selection sort			
5.	Which of the following statements about a linked list is true?										
	a)	It has a fixed size.	b)	Elements stored contiguously in memory	Č)	It allows for efficient random access	d)	It consists of nodes linked by pointers			
6.	Wh	Which type of linked list has its last node pointing to the first node?									
	a)	Singly linked list	b)	Doubly linked list.	c)	Circular linked list.	d)	Sparse linked list.			
7.	Tra	velling salesman p	oroble	em is an example o	of						
	a)	Dynamic Algorithm	b)	Greedy Algorithm	c)	Recursive Approach	d)	Divide & Conquer			

8.	Tin	Time complexity of Depth First Traversal of is									
	a)	$\Theta(V + E)$	b)	$\Theta(V)$	c)	$\Theta(E)$	d)	$\Theta(V ^* E)$			
9.	Visiting root node after visiting left and right sub-trees is called										
	a)	In-order Traversal	b)	Pre-order Traversal	c)	Post- order Traversal	d)	Level order			
10.	Hov	v is the 2nd element	in ar	n array accessed base	d on	pointer notation?					
	a)	*a + 2	b)	*(*a + 2)	c)	&(a + 2)	d)	*(a + 2)			
11	Whi	ch of the following i	s NO	T a primary function (of an	operating system?					
	a)	Memory management	b)	Device management	c)	File management	d)	Database management			
12	The	Banker's algorithm	grant	s resource requests i	f:						
	a)	The requested resources are immediately available.	b)	The requested resources do not exceed the maximum claim of the process.	c)	The requested resources do not exceed the total resources available in the system	d)	All of the above			
13	The Banker's algorithm is applicable to which type of resource allocation problem?										
	a)	Preemptive resource allocation.	b)	Non-preemptive resource allocation.	c)	Dynamic resource allocation.	d)	Distributed resource allocation.			
14	The	Dining Philosophers	prob	olem can lead to a dea	adloc	k if:					
	a)	All the philosophers pick up their left chopstick first.	b)	All the philosophers pick up their right chopstick first.	c)	All the philosophers try to pick up both chopsticks simultaneously.	d)	All the philosophers are hungry at the same time.			
15	In the Dining Philosophers problem, the maximum number of philosophers who can eat simultaneously without deadlock is: Answer: d) N-1, where N is the total number of philosophers.										
	a)	Answer: d) N-1, who	ere N b)		(5)	losophers. 3	d)	N-1, where N is the			
¢.	a)	•	U)	-	C)	3	u)	total number of philosophers.			
16		ch memory manage		technique allows for	effic	ient utilization of me	emory	by allocating memory			
	a)	Paging	b)	Segmentation	c)	Swapping	d)	Fragmentation			
17	A de	adlock in an operati	ing sy	stem occurs when:							
	a)	A process is unable to access a required resource	b)) A process gets stuck in an infinite loop.	c)	A process exceeds its allocated memory limit.	d)	A process encounters an error during execution.			

10	Consider a sy	stem with four	processes: P1, I	P2, P3, and	d P4. The arriva	al times and	burst times for each	
	process are g	iven in the tabl	e below:					
	Process	Arrival Time	Burst Time					
	P1	0	4					
	P2	2	6					
	P3	4	8					
	P4	6	2					
	Assuming the	scheduling alg	orithm is First-C	ome. First	-Served (FCFS)	what is th	e average waiting time	
	for these prod	cesses?			(1.01.0)	, while is th	c average waiting time	
	a) 6.5	b)	8.25	c)	9.75	d)	10.5	
19	Consider a sur			,		,		
17	maximum ros	ourse alle seti-	resource types	(A, B, and	C) and four pr	rocesses (P	1, P2, P3, and P4). The	
	Drocoss May A	Mosetian (A. D.	n needs for eacl	n process a	are as follows:			
		Allocation (A, B,	C)					
	P2 2, 2, 3							
	P3 1, 3, 1							
	P4 4, 2, 1							
	The current re	source allocati	on and the max	imum ava	ilable resource:	s in the sys	tem are as follows:	
	Process Alloca	tion (A, B, C)	Available (A,	B, C)				
	P1 1, 1		2, 1, 1					
	P2 1, 0							
	P3 1, 2	., 1						
	P4 0, 1							
	Using the Bank	ker's algorithm,	is the system in	n a safe sa	fe?			
	a) Yes		No	c)	Cannot	d)	None of these	
		,		• ,	Determine	u)	None of these	
20	Consider a syst	tem with five p	rocesses: P1, P2	. P3. P4. a	nd P5. The hur	st times for	r each process are giver	
	in the table be	low:				50 0111105 101	cach process are given	,
	Process Burst 7	Гime						
	P1 8							
	P2 4							
	P3 9							
	P4 5							
	P5 2							
	Assuming the s	cheduling algo	rithm is Round I	Pohin with	a tima auautu	62 - 1	at is the turnaround	
	time for proces	is P3?	ittiini is Rouna i	NODIII WILL	i a time quantu	ım or 3, wn	at is the turnaround	
	a) 10	b)	11	۵)	12	1)	42	
21	,	,		c)		d)	13	
21	A processor has	s an instruction	cache with a hi	it rate of 9	0% and an acco	ess time of	1 ns. If the cache miss	
	penalty is 20 ns	s, what is the av	erage memory	access tim	ne?			
	a) 1.1 ns	b)	2 ns	c)	2.2 ns	d)	3 ns	
22								
22	A computer sys	tem uses a dire	ect-mapped cacl	he with a	cache size of 8	KB and a bl	ock size of 32 bytes.	
	now many bits	are needed for	the cache inde	x?				
	a) 5 bits	b)	7 bits	c)	9 bits	d)	11 bits	
23	Which memony	type is the al-	oct to the CDII			,		
_5	Which memory	type is the clos	sest to the CPU	and provid	ies fast access	to frequent	tly used data?	
	a) Cache mer	mory b) I	Main memory	c)	Virtual memor	ry d)	Secondary memory	
			(RAM)	,		. • • • • • • • • • • • • • • • • • • •	(Hard Disk)	
							1	

24	Whic	h addressing mode	uses a	a base register plus a	n offs	et to calculate the n	nemoi	ry address?
	a)	Immediate	b) *	Direct addressing	c)	Indirect addressing mode	d)	Indexed addressing mode
25			a 32-	bit virtual address an	nd a 4	KB page size. How r	nany e	entries are there in the
	page a)	table? 256 entries	b)	512 entries	c)	1024 entries	d)	2048 entries
26	ln a r	nipelined processor,	whic	h hazard occurs whe	n the	current instruction	depen	ds on the result of a
20	previ a)	ious instruction that Data hazard	has ı b)	not yet completed? Control hazard	c)	Structural hazard	d)	Pipeline hazard
27	Whic	ch cache mapping te	chnic	que provides the fasto	est ac	ccess time but has lir	nited	capacity?
	a)	Direct mapping	b)	Associative mapping	c)	Set-associative mapping	d)	Fully associative mapping
28	Whi	ch technique is used	to re	duce the effect of m	emor	y latency in a pipelir	ned pr	
	a)	Branch prediction	b)	Instruction-level parallelism	c)	Out-of-order execution	d)	Loop unrolling
29	Whi	ch technique is used	to m	inimize the impact o	f con	trol hazards in a pipe	elined	processor?
	a)	Branch prediction	b)	Data forwarding	c)	Loop unrolling	d)	Out-of-order execution
30	Exar	nple of immediate a	ddre	ssing mode is:				
	a)	MOV A, B	b)	ADD A, [B]	c)	SUB A, #10	d)	JMP LABEL
31	Whi	ch of the following i	s NO	T a component of a fo	orma	language?		
	a)	Alphabet		Syntax	c)	Semantics	d)	Compiler
32	Whi	ich type of automato	n red	cognizes regular lang	uages	5?		
	a)	Pushdown automaton (PDA)	b)	Finite automaton (FA)	c)	Turing machine (TM)	d)	Linear-bounded automaton (LBA)
33	The	Chomsky hierarchy	class	ifies formal language	s into	how many levels?		
	a)	2	b)	3	c)	4	d)	5
34		ich type of automato	on ha	s both a finite contro	ol unit	and an unbounded	tape?	
	a)	Finite automaton (FA)	b)	Pushdown automaton (PDA)	c)	Turing machine (TM)	d)	Mealy machine
35	The	language accepted	by a	Turing machine with	a hal	ting state is known a	is:	
	a)	Regular language	b)	Context-free language	c)		d)	Recursive enumerable languag
36	Wh	ich of the following	is a n	on-deterministic aut	omat	on?		
· ·	a)	Finite automaton	b)	- 1	c)		d)	Mealy machine

37 Which of the following is true about regular languages? They can be They can be c) They can be They can b recognized by a recognized by recognized by a recognized by a Turing machine. pushdown linear-bounded automaton automaton. automaton 38 The Chomsky normal form (CNF) is a way to represent a context-free grammar (CFG) where: All the a) The start symbol is There are no εc) d) All the production production rules on the left-hand productions in rules have at most are in the form A side of the the grammar two non-terminals on -> Ab. production rules. the right-hand side 39 Which of the following is a regular expression for the language of all strings over {a, b} that contain at least one "a"? a) ab b) (ab)* c) (a+b)* (a+b)a(a+b) d) 40 Which type of automaton is used in lexical analysis for tokenizing source code? Finite automaton b) Pushdown c) Turing machine ™ Linear-bounded (FA) automaton (PDA) automaton (LBA) 41 Typically, a database administrator (DBA) is responsible for: Schema Schema Granting of d) All of the above definition modification authorization for data access 42 Which of the following queries will retrieve students whose name has 'p' as the second letter? SELECT rollNo SELECT rollNo b) SELECT rollNo SELECT rollNo FROM d) **FROM student** FROM student FROM student student where name = where name LIKE where name LIKE where name IN '_p%'; '_p'; _p%'; _p'; 43 Consider a relation R(A, B, C, D, E) and a set of all FDs that hold on R as given below: $\{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A\}$ Choose the correct option: R is in 1NF, not in b) R is in 2NF, not in R is in 3NF, not in d) R is in BCNF 2NF 3NF **BCNF** 44 Consider the following two sets of functional dependencies: $F = \{A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H\}$ $G = \{A \rightarrow CD, E \rightarrow AH\}$ Choose the correct option: a) only F covers G b) only G covers F F and G are d) None of the above equivalent 45 Consider the following schedule S. S: R1(X); W1(X); R2(X); W2(X); R1(Y); R2(Y); Which of the following is a non-conflicting pair of operations in the schedule S? a) R1(X); W1(X); b) W1(X); R2(X); c) W1(X); W2(X); R1(X); W2(X);d)

40	10	To be conflict serializable, all transactions should follow								
	a)	Binary locking	b)	Two phase locking	c)	Binary Locking with wait-for graph	, d)	None of the above		
47	Wh	ich of the following	is NO	T a type of database i	mode	el?				
	a)	Relational model	b)	Network model	c)	Hierarchical model	d)	Object-oriented model		
48	Wh	ich of the following	datab	ase models represen	ts da	ta as a collection of	key-val	ue pairs?		
	a)	Relational model	b)	Hierarchical model	c)	Network model	d)	NoSQL model		
49	Wh	ich SQL function is u	sed t	o calculate the total n	umb	er of records in a ta	ble?			
	a)	COUNT	b)	SUM	c)	AVG	d)	MAX		
50	S1: S2:	Consider the statements given below: S1: Data abstraction is the DBMS characteristic that allows program-data independence. S2: Data models allow representation of a database at different levels of detail. Choose the correct option:								
	a)	S1: True; S2: True		S1: True; S2: False	c)	S1: False; S2: True	d)	S1:False; S2: False		