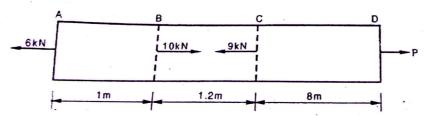
- 3		•				
3	P		1	20	•	•
	_	4	4	70	•	*

No.:					
	No.:	No.:	No.:	No.:	No.:

Name:_

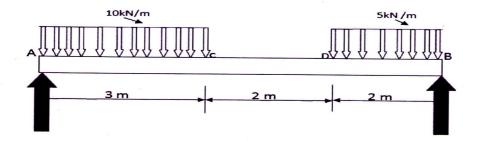
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Sixth Semester B.Tech Degree (S, FE) Examination May 2023 (2015 Scheme


Course Code: MR 306

Course Name: MECHANICS OF SOLIDS

Ma	x. N	farks: 100 Duration: 3 F	lours
		PART A	
1		Answer all questions, each carries 5 marks. Discuss about shear stress with a simple figure?	5
2		Enumerate about the principle of superposition?	5
3		A circular shaft of 100mm diameter is required to transmit torque. Find the shaft	5
		torque if the shear stress is not to exceed 85 MPa?	
4		Discuss about bending stress and with the help of a neat diagram show its	5
		distribution in a shaft?	
5		What are the various types of supports and give their reaction at support?	5
6		Explain about the sign conventions used in SFD and BMD	5
7		Name any two types of spring and explain their uses?	5
8		Define helical spring. Name the two important types of helical springs	5
		PART B	
		Answer any three questions, each carries 10 marks.	
9	a)		4
		on it.	
	b)	A load of 4kN has to be raised at the end of a steel wire .if the unit stress in the	6
		wire must not exceed 80N/mm ² , What is the minimum diameter required? What	
		will be extension of 3.50 m length of wire? Take $E = 2 \times 10^5 \text{N/mm}^2$	
10	a)	Derive the relation between young's modulus and bulk modulus	5
	b)	If the values of modulus of elasticity and poisson's ratio for an alloy body are	5
		150Gpa and 0.25 respectively. Determine the value of bulk modulus for the alloy?	
11		Elucidate the concept of torsion and derive torsional equations	10
12	a)	Derive an expression for bending stress at a layer in a beam	5
	b)	State the assumptions in the theory of pure bending	5


03000MR306052003

A steel member ABCD of uniform cross section area 1000 mm² is subjected to 10 axial force as shown. Calculate the force P required for equilibrium of the member and determine the change in length of member.

PART C
Answer any two questions, each carries 15 marks.

- A simply supported beam of span 5m is subjected to UDL of 10kN/m over 3m 15 length from the left end. In addition it carries a downward load of 20kN at 1m from the right end. Draw the SFD and BMD for the beam indicating the important values
- 15 a) Draw SFD and BMD of a simply supported beam of length 7 m carrying UDL as 10 shown in figure.

- b) Define the terms shear force, bending moment and point of contra flexure 5
- 16 a) Determine the number of plates required to enable the spring to carry a central 10 point load of 4 kN and also find out the deflection under the load?

 It is given that the spring 2m long is made up of plates each 10 cm wide and 2 cm thick and the bending stress in the plate is limited to 200N/mm².

Take $E = 2.1 \times 10^5 \text{N/mm}^2$,

- b) Discuss about slenderness ratio 5
- 17 a) Derive the expression for deflection of helical spring
 - b) Elucidate nipping in leaf springs 5
