1200ECT352052303

Reg No.:

13

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Sixth Semester B. Tech Degree Supplementary Examination May 2023 (2019 Scheme)

Course Code: ECT352

Course Name: DIGITAL IMAGE PROCESSING

Max. Marks: 100

Duration: 3 Hours

PART A

		Answer all questions, each carries 3 marks.	Marks
1		What is Mach band effect?	(3)
2		Explain the terms (i) false contouring and (ii) m-adjacency.	(3)
3		What is the role of quantisation matrix in JPEG compression?	(3)
4		List the advantages of Walsh transform over Fourier Transform.	(3)
5		What is the difference between high pass filter and a high – frequency emphasis	(3)
		filter? How does the difference affect the resultant image?	
6		What does the standard deviation of a histogram tell about the image?	(3)
7		A photograph is taken out of a side window of a car moving at a constant velocity	(3)
		of 80 km/hour. Why is it not possible to use an inverse or Wiener filter in general	
		to restore the blurring in this image?	
8		What are the advantages of Wiener filter over an inverse filter?	(3)
9		Compare the Canny edge detector with the Laplacian of Gaussian edge detector.	(3)
10		Distinguish between local and global thresholding techniques for image	(3)
		segmentation.	
		PART B	
		Answer one full question from each module, each carries 14 marks.	
		Module I	
11	a)	Define the terms brightness, contrast and hue with respect to digital images.	(4)
	b)	State and prove 2-D sampling theorem.	(10)

OR

- 12 a) Discuss the conceptual relationship between the RGB and HIS colour models with (10) neat sketches.
 - b) Differentiate between spatial resolution and intensity resolution (4)

1200ECT352052303

14

a

Module II

13	a)	Explain JPEG Image compression standard.	(7)
	b)	Find the 1D Walsh basis for the fourth $-$ order system (N=4).	(7)
		OR	
14	a)	Compute the 2D DFT of the matrix $x = \begin{bmatrix} 4 & 6 \\ 3 & 4 \end{bmatrix}$	(7)
	b)	What is Block Toeplitz matrix? Give an example.	(7)
		Module III	
15	a)	Why does histogram equalization (discrete histogram equalization) not produce a perfectly flat histogram?	(5)
	b)	Explain the steps involved in homomorphic filtering	(9)
		OR	
16	a)	What is meant is histogram equalization? Explain how histogram equalization can	(8)
		be performed on a given gray scale image, with necessary mathematical details.	
	b)	Explain the point operations used in image enhancement.	(6)
		Module IV	
17	a)	What is the difference between image restoration and image enhancement?	(6)
	b)	Explain linear image restoration using inverse filtering	(8)
		OR	
18	a)	Explain any two geometric transformations on an image	(6)
	b)	Explain the image restoration mechanism using Wiener filter.	(8)
		Module V	
19	a)	Explain the method of global thresholding for image segmentation.	(8)
	b)	Give three applications of image segmentation techniques.	(6)
		OR	
20	a)	Explain region splitting and merging in image segmentation with neat schematics	(8)
	b)	Explain the clustering technique used in image segmentation.	(6)
