Reg No.:___

7 3

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Sixth Semester B.Tech Degree Supplementary Examination May 2023 (2019 Scheme)

-----j = ---

Pages; 3

Course Code: EET302

Course Name: LINEAR CONTROL SYSTEMS

Ma	x. M	arks: 100 Duration: 3	Hours
		PART A Answer all questions, each carries 3 marks.	Marks
1		Compare open loop and closed loop systems. Give an example for each	(3)
2		Obtain the transfer function of a lead compensator with the help of an electrical network	(3)
3		Draw the unit step response of an under damped system and mark various time domain specifications	(3)
4		State and explain Routh- Hurwitz stability criterion.	(3)
5		Write the design steps of lag compensator using root locus.	(3)
6		Explain the effect of adding poles and zeros to the nature of root locus.	(3)
7		What is the relationship between phase cross over frequency and gain cross over	(3)
		frequency for a stable system.	
8		Point out the difference between minimum phase systems and non-minimum	(3)
		phase systems	
9		State and explain Nyquist Stability Criterion.	(3)
10		Write procedure for designing a lead compensator design using Bode plot	(3)
		PART B Answer one full question from each module, each carries 14 marks.	
		Module I	
11	a)	Derive the transfer function of an armature controlled DC motor and represent	(7)
		the system in block diagram form.	
	b)	Derive the transfer function of a lag-lead compensator.	(7)
		OR	
12	a)	Explain the following control system components	(8)
		(i) Sychro-transmitter	

(ii) AC tachogenerator

0300EET302052202

7.3

b) Obtain the transfer function of lag compensators using R-C circuit components (6) and hence explain the characteristics of the lag compensators

Module II

- 13 a) Derive the expression for unit step response of an under damped second order (8) system.
 - b) A unity feedback control system is characterized by an open loop transfer (6) function given below. Determine the value of K so that its damping ratio of the closed loop system is 0.5.

$$G(s) = \frac{K}{s(s+10)}$$

- 14 a) Derive the expression for rise time and peak time of an under damped second (8) order system.
 - b) Using Routh Hurwitz Criterion ascertain the stability of the system whose (6) characteristic equation is.

$$s^{6} + 3s^{5} + 5s^{4} + 9s^{3} + 8s^{2} + 6s + 4 = 0$$

Module III

15 a) Sketch the root locus of the system having open loop transfer function (14) $G(s)H(s) = \frac{K}{s(s+2)(s+4)}$. Find the value of K so that the damping ratio of the closed loop system is 0.5.

OR

- 16 a) Design a phase lag compensator for a system whose open loop transfer function (14) is $G(s)H(s) = \frac{K}{s(s+4)(s+5)}$ to meet the following specifications
 - (i) Damping ratio = 0.707 (ii) $K_v \ge 5$ (iii) $\omega_n = 2$ rad/sec. Module IV
- 17 a) Determine the gain cross over frequency, phase cross over frequency, gain (10) margin and phase margin for the system with open loop transfer function

$$G(s) = \frac{1}{s(2s+1)(1+s)}$$

b) What is resonant frequency and resonant peak for a second order system? What (4) is the relation between resonant peak of a system with the damping factor, η ?

OR

0300EET302052202

whose

18

Draw Bode Plot for a system whose open loop transfer function is (14)

$$G(s)H(s) = \frac{10}{s(1+s)(1+0.02s)}$$
. Also Determine

A unity feedback system has an open loop transfer function

- i. Gain Margin
- ii. Phase Margin
- iii. **Closed Loop Stability**

14

Module V

19

20

Draw the Nyquist plot for the system whose open loop transfer function is (14)

 $G(s) = \frac{K}{s(s+2)(s+10)}$. Determine the range of K for which the system is stable

OR

(14)

$$G(s) = \frac{K}{s(1+2s)}$$

Design a suitable lag compensator so that phase margin is 45 degree and velocity error constant is 5.