03000EE304052004

B

Reg No.:

Name:

Pages:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S6 (S,FE) / S6 (PT) (S,FE) Examination May 2023 (2015 Scheme)

Course Code: EE304 Course Name: ADVANCED CONTROL THEORY

Max. Ma	arks: 100 Duration: 3	Hours
	PART A	
	Answer all questions, each carries5 marks.	Marks
1	The transfer function of a compensator is $\frac{1+0.1s}{1+0.01s}$. Identify the corner	(5)
	frequencies. Is it a lag compensator or lead compensator? Give reason.	
2	What are the advantages of PID controller compared to P controller?	(5)
3	Consider a system with a transfer function	(5)
	$\frac{Y(s)}{U(s)} = \frac{10}{(s+1)(s+5)}$	
	Obtain the state space model of the system in a canonical form. Find the	
	Eigenvalues of the system matrix	
4	Consider the system given below	(5)
	$\dot{X} = \begin{bmatrix} -1 & 0 \\ 0 & -3 \end{bmatrix} X + \begin{bmatrix} 1 & a \\ 0 & b \end{bmatrix} U$	
	Find the range of values of "a" and "b" for the system to be controllable	
5	With the help of a suitable example and figures explain jump resonance	(5)
6	Sketch and write the expression for the output of dead zone non-linearity if the	(5)
	input is X sin(wt), gain of amplification can be assumed as k .	
7	What are singular points? Draw the nature of trajectories of any three types of	(5)
	singularity	
8	Check the definiteness of the following function	(5)
*	$V(x) = 10x_1^2 + 20x_1x_2 + 10x_2^2$	
	PART B	
	Answer any two full questions, each carries 10 marks	

9

10

A unity feedback system has an open loop transfer function G(S) = K/[s(s+1)]. (10)Design a suitable compensator for the system to satisfy the following specifications. (i) Phase margin $\geq 45^{\circ}$. (ii) Steady state error for a unit ramp input $\leq 1/15$. (ii) The gain crossover frequency of the system must be less than 7.5 rad/sec.

Design a suitable compensator for a unity feedback system with open loop (10)transfer function G(S) = K/[s(s+2)(s+8)] to satisfy the following specifications.

03000EE304052004

12

(i) Percentage overshoot $\leq 16\%$ for unit step input (ii) setling time for unit stepinput to be less than 6.1s (iii) Steady state error ≤ 0.125 for unit ramp input.

The open loop transfer function of a unity feedback system is $\frac{1}{s^2}$. Design an (10)appropriate compensator using root locus method so that settling time is less than 4 s and damping ratio is 0.45

PART C Answer any two full questions, each carries10 marks.

12 a)

13

a)

11

Consider the system given above, with R=10 ohm, L=1mH and $C=1\mu F$. Obtain a state space model by choosing physical variables as state variables

b) Transform the system model derived in 12 a) into phase variable form (5)

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -2 & -1 \end{bmatrix} x(t) + \begin{bmatrix} 2 \\ 1 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} x(t)$$
(10)

Consider the system given above if initial conditions are zero Find the output Y(t) if the input is

$$u(t) = \begin{bmatrix} r(t) \\ e^{3t}r(t) \end{bmatrix}$$

Given r(t) is unit

 $F(z)=2z^4+7z^3+10z^2+4z+1$

14 a) A sample data system is described by the following equation (5) y(k)+3y(k-1)+2y(k-2)=u(k)+5u(k-1)Obtain pulse transfer function Consider the system with characteristic polynomial **b**)

Investigate the stability of the system using Jury's Test

Page 2 of 3

(5)

(5)

03000EE304052004

PART D

Answer any two full questions, each carries 10 marks.

Construct the phase trajectory for the system $\dot{x_1} = x_2, \dot{x_2} = sin(x_1) - (10)$

 x_2 starting from (4,0) and identify the nature of equilibrium point at (π ,0).

Consider a third order system with transfer function $G(s) = \frac{2}{s(1+2s)(1+s)}$ with a (10) saturation amplifier given in figure below. The amplifier is having gain K in linear region. Determine largest value of gain K for the system to stay stable. What would be the frequency and nature of limit cycle for a gain of K=10?

17

15

16

Consider a non linear system described by the following equations

(10)

$$x_1 = x_2$$
$$\dot{x}_2 = -x_1^3 - x_2$$

Investigate the stability using Liapunov's method

14

Hint: V(x)= $x_1^4 + x_1^2 + 2x_1x_2 + 2x_2^2$
