02000ECT284072101

Μ

Reg No.:_

13

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fourth Semester B.Tech (Minor) Degree Examination June 2022 (2020 Admission).

Course Code: ECT284

Course Name: DIGITAL COMMUNICATION

Max. Marks: 100

Duration: 3 Hours

Pages;

PART A

		(Answer all questions; each question carries 3 marks)	Marks
1		List the advantages of digital communication system over analog communication	(3)
		system.	
2		What is the significance of source encoding in digital communication system?	(3)
3		Why do we prefer adaptive delta modulation instead of delta modulation?	(3)
4		Explain the term quantization noise.	(3)
5		Given the data stream 1110010100, sketch the transmitted sequence of pulses for	(3)
		each of the following line codes:	
		1) Unipolar nonreturn-to-zero	
		2) Polar nonreturn-to-zero	
6		What are the characteristics of signaling codes?	(3)
7		Draw the signal space diagram of QAM signal for M=8.	(3)
8		Explain BER-SNR curve of QPSK system.	(3)
9		Define channel capacity.	(3)
10		List two properties of cyclic codes.	(3)
		PART B	
		(Answer one full question from each module, each question carries 14 marks)	
		Module -1	
11	a)	State sampling theorem and explain the significance of Nyquist rate.	(8)
	b)	Prove that sampled signal can be reconstructed by passing the samples through a	(6)
12.	a)	low pass filter. Draw the block diagram of a linear PCM system and explain the blocks.	(8)
	b)	Explain how compander achieves non uniform quantization. What are the	(6)

various compression laws used for this application?

02000ECT284072101

14.

Module -2

13	a)	With the help of suitable block diagrams explain differential pulse code	(10)
		modulation. How does it differ from PCM and delta modulation?	
	b)	Explain the distortions associated with delta modulation.	(4)
14	a)	With the help of suitable block diagrams explain adaptive delta modulation.	(10)
	b)	Prove the necessary condition to be satisfied by a delta modulator to avoid slope	(4)
		overload distortion if the input is a sine wave of frequency f_m and amplitude A_m .	
		Module -3	
15	a)	Explain the principle of Manchester coding. Code the binary pattern	(8)
		{011000011} using Manchester coding.	
	b)	Explain the principle of alternate mark inversion coding with suitable example.	(6)
16	a)	Explain T carrier systems with proper block diagram.	(6)
	b)	Explain the B3ZS line coding scheme. Determine the B3ZS line code for the	(8)
		following data sequence: 101000110000000000010001.	
		Module -4	
17	a)	Explain the generation and detection of BPSK signals with the help of block	(8)
		diagrams. Draw the BER-SNR curve.	
	b)	Explain QAM modulation with neat block diagram.	(6)
18	a)	Draw the constellation diagram for QPSK modulation and explain the generation	(10)
		and detection of QPSK signals with the help of block diagrams.	
	b)	Explain the need for digital modulation in modern communication.	(4)
		Module -5	
19	a)	The parity matrix of a (6,3) linear systematic block code is given below.	(8)
		[0 1 1]	
		$\mathbf{P} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$	
		Find all the possible code vectors and draw the encoder diagram.	
	b)	Explain in detail, the principle of correlation receiver.	(6)
20	a)	Explain cyclic codes and channel encoding with cyclic codes.	(6)
	b)	Explain how matched filter is used in digital reception.	(8)