Reg	No.:		_		N:	ame:	1/2	OLL	IONA, CO
		APJ A	BDUL K	ALAM TEC	CHNOLOG	ICAL U	NIVERS	ITY	
	Sixt			gree Regular			14 1 2 1 2	1 1	ily 2021
							1/2	× 250	
					Code: IC3			CT	EHULL
Max. I	Marks: 5	C	ourse na	me: COMP	REHENS	IVE EX	AM (IC)		Duration, Illaur
						**			Duration: 1Hour
Instru	ctions:	(1) Each q	uestion ca	rries one ma	ırk. No neg	ative mar	ks for wr	ong a	nswers
				questions: 50		wastion v	ill ba fol	lowad	by 4 possible
		answers of	which on	ly ONE is co	rrect.	uestion n	an be jou	oweu	by 4 possible
		(4) If more	than one	option is ch	osen, it will	not be co	nsidered	for ve	aluation.
		(5) Calcula	itors are n	ot permitted					
1.	I Init a		C		COMMON				
1.				= y in the p					
2.	a) Domtion			−ĵ –					
۷.				erential equa					
	a)	$\frac{e^x}{2}$	b)	$\frac{e^x}{3}$	c)	$\frac{e^x}{4}$		d)	$\frac{e^x}{6}$
3.	The st	raight lines	which are	drawn from	various po	oints on th	e contou	r of a	n object to meet a
		are called as							
	a)	connecting lines	, ,	projectors		lines	icular	(d)	hidden lines.
4.	Where	do the proje	ection line	s converge ir	ı a perspect	ive sketch	?		
		line				point			The eye point
5.	The pr	inciple of tra	ansmissibi	lity of force	states that v	when a for	ce acts up	on a	body its effect is
4	,	Same at expoint in its of action		Same at point of the along direction		different		(d)	Nullified by the internal forces present in the
6.	A free	body diag	gram shou	ıld contain	all the ext		ces, supp	ort r	body already eactions and the
		of th	ne body ur	der consider	ation.				
	a) -	Internal force	ces (b)	Internal moments	c)	Self we the body		(d)	None of these
7.	What n	nakes the be	st practice		everyone. t			ficien	cy and safety
		Drawings	(b)	Standards Codes					Material Cost

8.		Which of the following components in a "House of Quality" drives the entire QFD process?										
		a)	Roof matrix	(b)	Product characteristics	c)	Relationship matrix	(d)	Customer requirements			
9.		Biodiversity cannot be conserved by										
		a)	Seed bank	(b)	Deforestation	c)	Botanical Garden	(d)	cryopreservation			
10.		Which of the ISO 14000 series of standards focuses on Life Cycle Assessment										
		a)	14010	(b)	14020	c)	14030	(d)	14040			
					PART B- COR	E C	OURSES					
11.		LVDT used for displacement measurement is a										
		a)	Active transducer	b)	Passive transducer	c)	Capacitive transducer	d)	Digital transducer			
12.		Opti	ical pyrometer is us	sed to	measure							
		a)	High temperature	b)	Low temperature	c)	Level	d)	High pressure			
13.		Compared to iron cored transducers air cored transducers are										
		a)	Small	b)	Big	c)	Equal in size	d)	None			
14.		Which of the following characteristics of a measurement system is a non desirable one?										
		a)	Fast response	b)	Fidelity	c)	Measurement lag	d)	None of these			
15.		Match the following										
		1. LVDT a. Resistive transducer										
		2. Strain gauge b. Temperature measurement										
		3. Capacitive transducer c. Direct method										
	4. Sight glass d. Level transm						. Level transmitter	itter				
		5. T	hermistor			e	. Series opposition	1				
16.		a) Dum	1-e,2-a,3-d,4- c,5-b nmy gauge is used	b) for	1-a,2-b,3-c,4-d,5- e	c)	1-b,2-a,3-d,4- c,5-e	d)	1-e,2-b,3-c,4- d,5-a			
		a)	Temperature	b)	Cold junction	c)	Current	d)	Resistance			
17.		compensation compensation compensation compensation Closeness with which an instrument reading approaches the true value of the quantity is										
		a)	Accuracy	b)	Sensitivity	c)	Drift	d)	Hysteresis			
18.	-	Deši	rable property of a	cond	uctor material used	in RT	D is/are					
		a)	Change in resistance per unit change in temperature should be as	b)	Change of resistance with temperature should be a linear function	c)	Resistance of the material should have continuous and	d)	All the above			

		large as possible				relationship with					
19.	Convert (22) ₈ into its corresponding decimal number.										
	a)	28	b)	18	c)	81	d)	82			
20.	WI inp	hat is the minimum out OR gates?	numł	per of two input NAN	,		,				
	a)	One	b)	Two	c)	Three	d)	Four			
21.	Wł	ny a demultiplexer i	s call	ed a data distributor	?						
22.	a) In a	The input will be distributed to one of the outputs a J-K flip-flop, if J=		The output will be distributed to one of the inputs	c) s refe	One of the inputs will be selected for the output rred to as	d)	Single input gives single output			
	a)	T flip-flop	b)	D flip-flop	c)	S-R flip-flop	d)	S-K flip-flop			
23.	A 3	•		maximum modulus		o Kimp nop	u)	3-K Inp-110p			
		3	b)	6	c)	8	d)	12			
24.	The	e main advantage of		with totem-pole out	,		,				
	a)	Higher fan in and higher fan out	b)	Fast switching and low power dissipation	c)	Higher noise margin and low	d)	None of these			
25.	Cor	Convert the 3A7 ₁₆ to Gray Code									
2	a)	111111111	b)	1001110100	c)	1001100110	d)	1110111000			
26.	Wh	ich of the following	is no	ot preferred for input	stage	of Op-amp?					
	(a)	Dual Input Balanced Output	(b)	Differential Input Single ended Output	(c)	Cascaded DC amplifier	(d)	Single Input Differential			
27.	A b	A buffer amplifier has gain of Output									
	a)	Zero	b)	Infinity	c)	Unity	d)	Dependent upon the circuit			
28.	Am	plifier in which inpu	ıt vol	tage is amplified by	scalir	ng factor is called		parameters			
	(a)	Summing amplifier	(b)	Average amplifier		Weighted amplifier	(d)	Differential amplifier			
29.	Whi	ich among the follow	wing	type of ADC require	shor	test conversion time	e				
20	~	Flash type	(b)	Successive approximation		Dual slope	(d)	All of the above			
30.	An l	RC coupling circuit	is an	example of what typ	oe of	filter?					
	(a)	Low pass filter		High pass filter		Band pass filter		All pass filters			
31.	The	range of frequencie	s ove	r which the PLL can	acqu	ire lock with an inp	out si	gnal is called			

	(a)	Lock-in Range	(b)	Capture Range	(c)	Input Range	(d)	None of the		
32.	Two	o loops are said to l	be no	n-touching only if no	o com	mon exists	betwe	above een them.		
		Loop	b)	Feedback path	c)	Branch	d)	Node		
33.	Let and	c(t) be the unit step c(∞) = 10, then the	resp e valu	onse of a system win	th trai	nsfer function K(s+				
	a)	2 and 10	b)	-2 and 10	c)	10 and 2	d)	2 and -10		
34.	A sy of st	ystem with transfer tep height. The valu	functue of	tion 1/Ts+1, subjecto t is :	ed to	a step input takes to	seco	onds to reach 50%		
	a)	6.9s	b)	10s	c)	14.4s	d)	20s		
35.	The	open loop transfer	funct	tion of a feedback co	ontrol	system is $G(s) =$	1	10 		
	The	gain margin of the	syste	em is:		2 (3)	(s + 1)3		
	a)	16	b)	8	c)	4	d)	2		
36.	The	transfer function o	f a co	mpensator is given	as G	$c(s) = \frac{(s+a)}{(s+b)}$				
	$G_{c}(s)$	s) is a lead compens	sator	if:	ŭ	(s+b)				
	a)	a = 1, b = 2	b)	a = 3, b = 2	c)	a = -3, b = -1	d)	a = 3, b = 1		
37.	The first two rows of Routh array of a third order characteristic equation are:									
	s^3 :	3 3								
	s ² :	4 4								
	It ca	n be inferred that the	he giv	en system has:						
,	a)	One real pole in the right half of s-plane	b)	A pair of complex conjugate poles in the right half of s- plane	c)	A pair of real poles symmetrically placed around s = 0	d)	A pair of complex conjugate poles on the imaginary axis		
38.	Whice Four	ch among the followier Transform of di	wing iscret	assertions represents e time signal (DTFT	s a ne	cessary condition f	or the	of the s-plane existence of		
* 39.		Discrete Time Signal should be absolutely summable	b)	Discrete Time Signal should be absolutely multipliable	c)	Discrete Time Signal should be absolutely integrable	d)	Discrete Time Signal should be absolutely differentiable		
37.		system, $y(t) = x(t)$								
40.	×	Noncausal and memory less Z transform of $\delta(n)$	b) (- <i>m</i>)	Causal and with memory is	c)	Noncausal and with memory	d)	Causal and memory less		
	a)	z ⁻ⁿ	b)	z ^{-m}	c)	1/z ⁻ⁿ	d)	1/z ^{-m}		
41.	A dis	screte signal is said	to be	even or symmetric						
						ERROR CONTRACTOR CONTR				

	a)	x(n)	b)	0	c)	-x(n)	d)	-x(-n)					
42.	The	e trigonometric Fou	rier s	eries of an even func	tion o	of time does not ha	ve	7					
	a)	The dc term	b)	The cosine terms	c)	The sine terms	d)	The odd harmonic term					
43.	Fin	Find the Laplace transform of $u(t)$ and its ROC.											
	a)	$\frac{1}{s}$; $\sigma < 0$	b)	$\frac{1}{s}$; $\sigma > 0$	c)	$\frac{1}{s-1}$; $\sigma = 0$	d)	$\frac{1}{1-s}$; $\sigma = 0$					
44.	T-ty	ype thermocouple is	mad	e of									
	a)	Chromel-alumel	b)	Copper- constantan	c)	Iron-constantan	d)	None of these					
45.	A P	Pirani gauge sensor	is use	d to measure pressur	es of	the order of							
	a)	10 MPa	b)	1 MPa	c)	100 Pa	d)	1 Pa					
46.	One of the disadvantages of filled system Thermometer												
	a)	High Maintenance	b)	Need for electrical Measurement	c)	Need a bulb for accuracy	d)	High Cost					
47.	A U- tube manometer is used to measure the pressure of a												
	a)	Gas	b)	Liquid	c)	Gas as well as liquid	d)	None of these					
48.	One	of the disadvantag	es of	bellows is									
	a)	High Cost	b)	It needs ambient temperature compensation	c)	It cannot measure absolute and differential pressure	d)	Inability to deliver high force					
49.	Con	ductivity is defined	as th	e ability to carry		pressure							
	a)	Voltage	b)	Resistance	c)	Current	d)	All of the mentioned					
50.	Cap	acitive devices are	used	for the level measure	ement	tof		*					
	a)	Only liquid	b)	Solid in powdered form	c)	Both (a) and (b)	d)	None of these					