9.

db is ____

a) 600 dB

0600ECT308052201

			~
7	~~	-	
	σe		
		_	

Reg	No.:_				Nan	ne:	133	ALL TO THE REAL PROPERTY OF THE PARTY OF THE
		APJ ABDU	JL K	ALAM TECHNO		110		M Tall
				ech Degree Examina				XX 3XX
				8		une 2022 (201) S	CHOMIC	Control of the second
							TE	UTHURU
				Course Code:				
Mov' N	Anales	Course	nam	e: COMPREHEN	ISIVI	E COURSE WO	RK	
Max. N	viarks	: 30						Duration: 1Hour
Instruct	ions:	(1) Each question co	arries	one mark. No negative	marks	for wrong answers		
		(2) Total number of	quest	ions: 50				
		which only ONE is a	correc				sible an	swers of
)		(4) If more than one	optio	n is chosen, it will not	be cons	idered for valuation.		-
1.	The	e wave shaping eler	nents	are				
	a)	Resistor		Capacitor	c)	Diode	d)	All are correct
2.	The	e formula used to ca	ılcula	te the time constant	t in inc	ductive circuit is		
	a)	RC		L/R		R/C	d)	LC/R
3.	Tra	nsistor biasing repr	esent	s Con	dition	S	-/	26/IC
	a)	AC		DC	c)	Both AC and DC	d)	None of these
4.	For tran	faithful amplificati	on by	a transistor circuit	, the v	alue of V _{BE} should	I	For a silicon
	a)	Be zero	b)	Be 0.01 V	c)	Not fall below 0.7 V	d)	Be between 0 V and 0.1 V
,	10.1							
5.		ie collector supply i	s 10	V, then collector cut	off vo	oltage under d.c. c	onditio	ons is
₹	a)			5 V	,	2 V	d)	10 V
6.	The	input capacitor in a	ın am	plifier is the		capacitor		
	a)	Coupling	b)	Bypass	c)	Leakage	d)	None of the
7.	If a	transistor amplifie	r dra	ws 2mA when input	t volta	ge is 10 V then its	s input	above
	a)	20 ΚΩ		2 ΚΩ	c)	10 KΩ		
8.	A C	E amplifier is also of		circuit	,	10 1142	d)	5 ΚΩ
		Grounded		Grounded Base	c)	Grounded	d)	None of these
9.	Ifat	Emitter hree stage amplifie	r has	individual stage ga	ins of	Collector 10db, 6db and 15d	h: the	n the total gain in

c) 14 dB

d) 31 dB

b) 24 dB

10.	Ide	al regulated power s	uppl	y is one which has vo	oltag	e regulation of						
	a)	0%	b)*	1%	c)	10%	d)	5%				
11	The	e representation of o	ctalı	number (532.2)8 in d	ecim	al is	0					
	a)	$(346.25)_{10}$	b)	$(532.864)_{10}$	c)	$(340.67)_{10}$	d)	$(531.668)_{10}$				
12	Co	nvert binary to octal	: (11	0110001010)2 =								
	a)	$(5512)_8$	b)	$(6612)_8$	c)	(4532)8	d)	(6745)8				
13	The	The expression for Absorption law is given by										
				A + AB = B			d)	A + B = B + A				
14	De	Morgan's theorem s	tates	that								
	a)	(AB)' = A' + B'	b)	(A + B)' = A' * B	c)	A' + B' = A'B'	d)	(AB)' = A' + B				
15	The	The logical sum of two or more logical product terms is called										
	a)	SOP	b)	POS	c)	OR opeartion	d)	NAND operation				
16	The	ere are	N	Minterms for 3 variab	les (a	a, b, c).						
	a)	0	b)	2	c)	8	d)	1				
17	Perform binary addition: $101101 + 011011 = \dots$											
	a)	011010	b)	1010100	c)	101110	d)	1001000				
18	All logic operations can be obtained by means of											
	a)	AND and NAND operations	b)	OR and NOR operations	c)	OR and NOT operations	d)	NAND and NOR operations				
19	If A and B are the inputs of a half adder, the sum is given by											
		A AND B		A OR B		A XOR B	d)	A XNOR B				
20	A latch is an example of a											
		Monostable		Astable multivibrator	c)	Bistable multivibrator	d)	555 timer				
21	Which of the following electrical characteristics is not exhibited by an ideal op-amp?											
	a)	Infinite voltage gain	b)	Infinite bandwidth	c)	Infinite output resistance	d)	Infinite slew rate				
22	Ifo	utput is measured be	twee	en two collectors of tr	ansi	stors, then the Diffe	erentia	al amplifier with				
	two	input signal is said Dual Input		configured as Dual Input	c)	Single Input	d)	Dual Input				
	ω)	Balanced Output	U)	Unbalanced	C)	Balanced Output	u)	Unbalanced				
23	An.	inverting amplifica-	vith.	Output	i	t voltage: 1 2 V 2 2	V	Output				
23		inverting amplifier v out voltage?	viin į	gain 1 have different	ınpu	i voitage: 1.2 V,3.2	v an	a 4.2 V. Find the				
	-	4.2 V	b)	8.6 V	c)	-4.2 V	d)	-8.6 V				

24	If the gain of a non-inverting averaging amplifier is one, determine the input voltages, if the output voltage is 3 V?										
	a)	V1 =6 V, V2=3 V and V3=2 V	b)	V1 =9 V, V2=5 V and V3=-4 V	c)	V1 =8 V, V2=- 6V and V3=1 V	d)	V1 =7 V, V2=4 V and V3=-3 V			
25	The	e temperature of a th	ermi	stor increases, when	the v	alue of its resistanc	e				
	a)	Remains constant	b)	Increase	c)	Decrease	d)	Depends on the heating element			
26	Wh	at is Barkhausen cri	terio	n for oscillation?				<i>B</i>			
	a)	AB > 1	b)	$A\beta < 1$	c)	AB = 1	d)	$AB \neq 1$			
27	Wh	at will be the phase	shift	of feedback circuit in	n RC	phase shift oscillat	or?				
	a)	360° phase shift	b)	180° phase shift	c)	90° phase shift	d)	60° phase shift			
28	The	condition for zero p	ohase	e shift in Wein bridge	osc	illator is achieved b	y				
	a)	Connecting feedback to non-inverting input terminal of op-amp	b)	Balancing the bridge	c)	Applying parallel combination of RC to the feedback network	d)	All of the mentioned			
29	Hov	w do we determine th	he ti	me period of a monos	table						
	a)	T = 0.33RC	b)	T = 1.1RC	c)	T = 3RC	d)	T = RC			
30	At v	which state the phase-locked loop tracks any change in input frequency?									
	a)	Free running state	b)	Capture state	c)	Phase locked state	d)	All of the mentioned			
31	poir	nt DFT?	is tru	ue regarding the num	ber o		uires				
32		N ² complex multiplications and N(N-1) complex additions		N ² complex additions and N(N-1) complex multiplications	c)	N ² complex multiplications and N(N+1) complex additions	d)	N ² complex additions and N(N+1) complex multiplications			
32		$V_4^{100} = W_x^{200}$, then w				0	15				
33	a)	2	b)				d)	16			
33	120			ie in case of Overlap			4.				
	a)	M zeros are appended at last of each data block	b)	M zeros are appended at first of each data block	c)	M-1 zeros are appended at last of each data block	d)	M-1 zeros are appended at first of each data block			
34	Wha		uenc	y that is contained in	the s	sampled signal?					
	a)	2Fs	b)	Fs/2	c)	Fs	d)	None of the mentioned			

35			nalyzed, limiting the lent to multiplying {			e to i	z samples, in the		
	a) Kaiser window	w b)	Hamming window	c)	Hanning window	d)	Rectangular window		
36	Computational con	nplexity r	efers to the number o	f					
	a) Additions		Arithmetic operations		Multiplications	d)	None of the mentioned		
37	Which of the follow	wing is a	method for implemen	iting	an FIR system?				
	a) Direct form		Cascade form		Lattice structure	d)	All of the mentioned		
38	What is the proces	s of reduc	ing the sampling rate						
	 a) Sampling rate conversion 		Interpolation		Decimation	d)	None of the above		
39	In recursive system finite-precision ari		of the following is ca	aused	because of the nor	nlinea	rities due to the		
	a) Periodic oscillations in input	b)	Non-Periodic oscillations in the input	c)	Non-Periodic oscillations in the output	d)	Periodic oscillations in the output		
40	What is the expans	sion of DF	PCM?						
	a) Differential P Code Modula	,	Different Pulse Code Modulation	c)	Differential Plus Code Modulation	d)	None of the mentioned		
41		stor creat	ing thermal noise is d	loubl	ed. The noise power	er gen	erator is		
	therefore a) Halved	b)			Doubled	d)	Unchanged		
42	Which of the following is the most reliable measurement for comparing amplifier noise								
	characteristics? a) Signal-to-No ratio	ise b)	Noise factor	c)	Shot noise	d)	Thermal noise agitation		
43		pectation	, the variance of a rar	ndom	variable X is deno	oted as	s?		
	a) $(E(X))^2$	b)	$E(X^2) - (E(X))^2$	c)	$E(X^2)$	d)	2E(X)		
44	Which of the follodiscrete Random V		tioned standard Prob	abili	ty density function	s is ap	oplicable to		
٧	a) Gaussian Distribution	b)	Poisson Distribution	c)	Rayleigh Distribution	d)	Exponential Distribution		
45	Non uniform quan	tizer	distortion.						
	a) Increases	b)	Decreases	c)	Does not affect	d)	None of the mentioned		
46	The spectral densi	-							
	a) Exponential	b)	Uniform	c)	Poisson	d)	Gaussian		
47	The term heterody	ning refer	s to						
	a) Frequency conversion	b)	Frequency mixing	c)	Frequency conversion and mixing	d)	None of the mentioned		

48	Rol	off factor is the fi	raction	1 01				
49	a)	Excess bandwidth and absolute bandwidth edetector that mini		Excess bandwidth and minimum yquist bandwidth the error probability	c)	Absolute bandwidth and minimum yquist bandwidth illed as	d)	None of the mentioned
50	a) Wa	Maximum likelihood detector velength and anten	b)	Minimum likelihood detector	c)	Maximum & Minimum likelihood detector	d)	None of the mentioned
50	wa	veicingui and anten	iia Siz	e are related as				
	a)	λ/2	b)	λ/4	c)	2λ	d)	4λ