U		V1107								
Reg No.: APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITE SIXTH SEMESTER B.TECH DEGREE COMPREHENSIVE EXAMINATION SAY 2019 Course Code: CE352 Course name: COMPREHENSIVE EXAM (CE) Max. Marks: 50 Duration: 1 Hour Instructions: (1) Each question carries one mark. No negative marks for wrong answers (2) Total number of questions: 50 (3) All questions are to be answered. Each question will be followed by 4 possible answers of which only ONE is correct. (4) If more than one option is chosen, it will not be considered for valuation. (5) Calculators are not permitted										
1. The ra	1. The radius of convergence of the series $\sum_{k=1}^{\infty} \frac{(x-5)^k}{k^2}$ is									
a) 2. • Solutio	1 on of $y''' - y' = 0$ i	b) 2	c) 3 *	d)	0					
a) 3. A mas single	$c_1 + (c_2 + c_3 x)e^x$ is m is attached to two degree of freedom s	b) $c_1 e^x + c_2 e^{-x}$ wo identical springs has system is	c) $c_1 + c_2 e^x +$ ving spring const	∙ c₃e ^{−x} d) ant k. Natural	$c_1 + (c_2 + c_3 x)e^{-x}$ frequency of the					
a) 4. A ball , Tensic	$\sqrt{2k/m}$ of weight 100N is the cord is	b) $\sqrt{3k/m}$ ied to a smooth wall b	c) $\sqrt{4k/}$ y a cord making a	$\frac{1}{m}$ d) an angle of 30	$\sqrt{k/m}$ degree to the wall.					
a) 5. The de suitabi	86.6 esired features or cha lity for a given task	b) 50 • aracteristics of the des	c) 75.5	d) e its ultimate e	0 •					
•a) 6. In 'Ho	Design Function use of Quality' the r	b) Design Constraints roof represents:	c) Design ana	lysis d)	Design Functions					
a) *	Relationship between customer and manufacturer	b) Inter- relationship between technical requirements	c) Relation be customer as technical requiremen	rtween d) nd ıts	Customer requirements					
7. LOWES	Troposphere	b) Stratosphere	a) Thomas-1		Magagehare					
a) 8. Industr	rial Symbiosis aims	at	e) mermosph	die (1)	wiesosphere					

12

۰.

.

V1107

Pages: 5

5

	a)	zero waste generation	b)	energy efficiency	c)	high gener	employment ation	d)	industrial mechanisation		
9.	A 5 cm long line is parallel to VP and inclined at 30° to HP. What is its length in the front view?										
	a)	4.33 cm	b)	2.5 cm	c)	5 cm		d)	2.88 cm		
10.	 A cylinder is placed on H.P on its base and section plane is inclined to V.P and perpendicular to H.P cutting the solid the section gives 										
	a)	parabola	b)	circle	c)	rectar	ngle	d)	ellipse		
	PART B- CORE COURSES										
11.	 The relationship between the linear elastic properties Young's modulus (E), rigidity modulus (N) and bulk modulus (K) is 										
10	a)	$E = \frac{KN}{3K+N}$	b)	$E = \frac{9KN}{K+N}$	c)	E =	<u>9KN</u> K+3N	ď	$E = \frac{9KN}{3K+N}$		
12.	If par	two equal tensile allelopiped bar with	stres n mate	sses σ that are erial properties E a	mut ind µ	ually j	perpendicular esulting strain	act of th	on a rectangular ne bar is given by		
13.	a) For	$\frac{\sigma}{E}(1+\mu)$ the beam shown in	b) 1 the b	$\frac{\sigma}{E}(1-\mu)$ below figure, the sl	c) hear	force a	$\frac{\sigma}{E}(1+2\mu)$ t A is equal to	ď	$\frac{\sigma}{E}(1-2\mu)$		
	a)	<u>wl</u> /6	b)	w1/3	c)	wl		d) 2wl/3		
14.	The	e maximum shear s	tress i	n a rectangular cro	DSS S	ection i	. ·	_av	erage shear stress		
	a)	³ / ₄ times	b)	4/3 times	.c)	3/2	times	d) 2/3 times		
15.	15. The simply supported beam 'A' of length l carries a central point load W . Another beam 'B' is loaded with a uniformly distributed load such that the total load on the beam is W . The ratio of maximum deflections between beams A and B is										
	a)	5/8	b)	8/5	c)	5/4		d)* 4/5		
16.	Ac	cording to Euler's c ls is th	olum e crip	n theory, the cripp pling load for a sin	ling mila	load fo colum	or a column of in hinged at bo	leng oth e	th (l) fixed at both nds.		
	a)	equal to	b)	two times	c	four	times	d) eight times		
17.	For	r a circular shaft sul	ojecte	d to torsion, the va	riati	on of s	hear stress acr	oss t	he section is		
2.5	a)	Parabolic with	_b)_	uniform over the	C	Line	ear with zero a	t_d) linear with		
18.	In	at centre the 'method of joint	ts' for	the analysis of tru	iss, t	he num	iber of equilib	rium	centre equations at each		
Page 2 of 5											

U

1

¥

13

U	V1107							Pages: 5			
	joi	nt is									
	a)	1		b)	2 *		c)	3		d)	4
19.	Th spa	e prop reaction is	on of a	pro	pped	cantilever of	span	L, subjected	l to udl	of int	ensity w over full
	a)	3 wL/8		b)	5wL	/8	c)	wL/8		d)	9wL/8
20.	A s ber	imply supported in the support of th	rted bea t at C, 1	m A m f	B has rom A	a span of 5m is maximum	n. Th 1 at	e ordinate of and its	influen value is	ce line s	e diagram for
	a)	Midspan, 1	0.1	b)	C, 0	.8	c)	supports,	0.5	d)	Midspan, 0.2
21.	Horizontal component of the force along the length of a cable carrying a UDL over the entire span is										
22	a)	zero	e	b)	const	ant	c)	increasing uniformly minimum a support	with at	d)	decreasing uniformly with maximum at support
22.	A 3 hing	-hinged arch ge is at the cr	with sp own. He	an I oriz	and ontal 1	rise h carries reaction at the	s a co e hing	oncentrated le ged supports	oad P at which a	t quarte are at t	er span. The third he same level
	a)	PL/4h •		b)	PL/81	1	c)	PL/4		۳ d)	PL/h
23.	The	analysis of a	statical	lly i	ndeter	minate beam	can	be done by			
	a)	Equations o equilibrium	f	b)	Equat displa defor	tions of acements or mations	c)	Both (a) an	d (b)	d)	None of the above.
24. *	A b effe	eam AB (spa ct is	n L, fle	xur	al rigi	dity EI) is fix	ted a	t A and B. T	he supp	oort B	settles by Δ . The
• *	a)	A moment of $\frac{6 EI \Delta}{L^2}$ is independent of at A only	iuced	b)	A mon is indu only	nent of $\frac{6 EI \Delta}{L^2}$ used at B	c)	Moment of - is induced at B	$\frac{5 EI \Delta}{L^2}$ t A and	d)	Moment of $\frac{6 EI \Delta}{L^2}$ at A and $\frac{3 EI \Delta}{L^2}$
25.	The discharge of a broad crested weir with an available head H is maximum when the depth of water h is										
	a)	H/3	~ ł))	2H/5		c)	2H/3		d).	H/2
26.	The	free vortex f	low for	ns							9 .
	a)	straight lines	s ł)	conce	ntric circles	c)	parabola		d)	hyperbola
27.	The imaginary line drawn in the fluid in such a way that the tangent to any point gives the direction of motion at that point, is known as										
	a)	Path line	t))	Stream	n line	c)	Steak line	10 m. 	<u>d)</u>	Potential line
28.	Darc	cy-Weisbach	equation	on g	ives re	elation betwee	en				
	a)	Pressure and temperature	l t)	Mass, and pr	volume essure	c)	Head loss as pressure los	nd s	d)	Pressure loss

12

•

.

Page 3 of 5

U		×	Pages: 5									
29.	Wi	With the boundary layer separation, displacement thickness										
	a)	Increases	b)	Decreases	c)	Remains Same	d)	Independent				
30.	Bo flui	Boundary layer thickness is the distance from the boundary to the point where velocity of the fluid is										
31	a) Ing	equal to 10% of free stream velocity	b)	equal to 50% of free stream velocity	c)	equal to 90% of free stream velocity	d)	equal to 99% of free stream velocity				
	nig	Compart and	1									
32.	a) For	water good concrete fine	D)	Lime, sand, water modulus of coarse :	c) aggre	Lime, cement, sand, water	d)	Clay, water				
	a)	3 to 4.5	b)	2 to 3.5	c)	6 to 8.5	d)	None of the				
33.	Mo	above Most commonly used admixture in concrete to reduce the setting time of cement is										
34.	a)	Calcium sulphate	b)	Calcium chloride	c)	Natural wood resins	d)	Pozzolana				
5.11	a)	Under reemad	L)	Timber aile	лран		1					
35.	a) The	pile member which is	place	ed horizontally to su	c) pport	common rafter of a s	d) slopir	Stepped footing og roof is?				
	a)	Purlin	b)	Batten	c)	Strut	d)	Cleat				
36.	The process of injecting mortar with low water cement ratio at a high pressure through a nozzle to repair cracks in concrete is called											
	a)	Grouting	b)	Shortcreting	c)	Guniting	d)	None of the				
* 37.	The soil	The ratio of saturated unit weight to dry unit weight of a soil is 1.25. The water content of the soil is										
	a)	10%	b)	25%	c)	50%	d)	100%				
38. *	The liquid limit (LL), plastic limit (PL) and shrinkage limit (SL) of a cohesive soil satis relation											
	a)	LL > PL < SL	b)	LL > PL > SL	c)	LL > PL < SL	d)	LL > PL < SL				
39.	A flow is taking place in a soil for which porosity is 'n'. If the discharge velocity is 'v', then the seepage velocity will be											
	a)	n. v	b)	n/v	c)	v/n	d)	v/n^2				
40.	0. Quick sand is occurring when its											
	a)	Effective	b)	Effective pressure	c)	Effective pressure	d)	None of the				
		pressure is equal to atmospheric pressure		equal to seepage pressure		is reduced to zero		above				

41. Primary Consolidation is due to expulsion of

12

1

Page 4 of 5

U V1107 Pages: 5 a) Air b) Water c) Both Air and None of the d) Water above 42. In the stability analysis of finite slopes, the Swedish Circle method assumes that the surface of sliding is a) An Arc of a b) Straight line c) An arc of a Circle An elliptical d) parabola arc 43. With the increase in the amount of compaction energy **OMC** increases OMC decreases a) b) c) Both OMC and Both OMC and d) but MDD but MDD MDD increase MDD decrease decreases increases 44. As per IS 456 2000, permissible tensile stress in concrete made of M25 concrete is 3.5 N/mm^2 b) 60 N/mm^2 a) c) 2.5 N/mm^2 d) None of these 45. As per IS 456-2000, in the limit state design of flexural member, the strain in reinforcing bars under tension at ultimate state should not be less than b) $\frac{fy}{Es} + 0.002$ a) $\frac{fy}{1.15Es}$ +0.002 fу Es $1.15 E_{S}$ The minimum area of tension reinforcement in a beam shall be greater than 46. 0.85 bd a) 0.87*f* y c) 0.04bd 0.4bdb) d) bd fy fy 47. For limit state of collapse in flexure of singly reinforced beams, if the strain in concrete reaches the limiting value earlier than that in steel, the beam section is called a) Under b) Critical section c) Over reinforced d) Balanced reinforced section section section 48. Side face reinforcement shall be provided in the beam when depth of the web in a beam exceeds 50cm b) 100cm 75cm a) c) d) 120cm 49. If d is the diameter of a bar, f_t is allowable tensile stress and fb is allowable bond stress, the bond length is given by $\frac{\pi ft d}{4 fb} = c)$ $\frac{ft\,d}{4\,fb}$ $\frac{\pi ft\,d^2}{4\,fb}$ $\frac{\pi f t d^2}{f b}$ a) b) d) 50. The load carrying capacity of a helically reinforced column as compared to that of a tied column is about 5% less a) b) 10% less c) 5% more d) 10% more

Page 5 of 5
