13

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Sixth Semester B. Tech Degree Examination June 2022 (2019 Scheme)

Course Code: CET308 Course name: COMPREHENSIVE COURSE WORK

Max. Marks: 50 Duration: 1Hour Instructions: (1) Each question carries one mark. No negative marks for wrong answers (2) Total number of questions: 50 (3) All questions are to be answered. Each question will be followed by 4 possible answers of which only ONE is correct. (4) If more than one option is chosen, it will not be considered for valuation. The shape of the bending moment diagram over the length of a beam, carrying a uniformly 1. distributed load is always a) linear b) parabolic c) cubical d) circular If the shear force along a section of a beam is zero, the bending moment at the section is 2. a) zero b) maximum minimum c) d) average of maximumminimum For a given material Young's modulus is 200 GPa and modulus of rigidity is 80 GPa. The value 3. of Poisson's ratio is a) 0.15 b) 0.2 c) 0.3 d) 0.25 If the principal stresses in a plane stress problem are $\sigma 1 = 100$ MPa and $\sigma 2 = 40$ Mpa, the magnitude 4. of maximum shear stress will be 60 a) b) 50 c) 40 d) 30 The angle between major principal plane and minor principal plane for a strained body is 5. a) 45 b) 30 c) 90 d) 60 6. The angle between principal plane and the plane of maximum shear is a) 90 b) 125 c) 60 d) None of these What is the stress developed in bending a 10mm diameter steel rod of E= 200GPa to 2000mm 7. diameter 500MPa a) b) 2000Mpa 1000MPa c) d) 900MPa 8. The bending stress in a beam varies directly with a) Moment of inertia b) Polar moment of c) Cross section of d) Distance from the inertia the beam neutral axis

12

4

9.	In a at a	In a simply supported beam maximum shear stress in a triangular cross section of altitude h occurs at a distance										
	a)	h/3 from the bottom of the beam	b)	h/3 from the top of the beam	c)	h/6 from the neutral axis	d)	h/3 from the top of the beam				
10.	Т	Two beams of equal cross-sectional areas are subjected o equal bending moment. If one beam										
	has square cross section and the other has a circular cross-section, then											
	a)	Both beams will be equally strong	b)	Circular section will be stronger	c)	Square section will be stronger	d)	the strength of the beam will depend on the nature of loading				
11	Ар	A pitot tube is used to measure										
10	a)	pressure	b)	difference in pressure	c)	velocity of flow	d)	none of these.				
12	For	For exerting a pressure of 4.8 kg/cm ² , the depth of oil (specific gravity 0.8), should be										
	a)	40 cm	b)	41cm	c)	56 cm	d)	60 cm				
13 The flow in open channel is said to be subcritical if the Froude number is												
	a)	less than 1.0	b)	equal to 1.0	c)	greater than 1.0	d)	none.				
14	In t of g	he stability of floating gravity G.	bodi	es, the stable equilibriu	ım is	attained if the meta	centro	e M the centre				
	a)	Lies above	b)	Coincides with	c)	Is parallel to	d)	Lies below				
15 A vertical triangular plane area, submerged in water, with one side in free surf and altitude h has the pressure centre below the surface by							ace, v	ertex downward				
	a)	h/4	b)	h/3	c)	h/2	d)	2h/3				
16	For	incompressible fluid f	low, i	if area reduces then wh	nat is	the effect on the vel	ocity					
	a)	increases	b)	decreases	c)	first increases then decreases	d)	first decreases then increases				
17	The diameters of a pipe at the sections 1 and 2 are 8 cm and 13 cm respectively. Find the discharge through pipe if the velocity of water flowing through the pipe at section 1 is 6 m/s. Determine also the velocity at section 2.											
	a)	2.27 m/s	b)	4.54 m/s	c)	1.13 m/s	d)	3.25 m/s				
* 18	Two rese the	o pipe lines of equal le ervoirs. If the friction f smaller pipe is	ngth actor	and diameters of 10cm f is same for bot h the	and pipes	40 cm are connected s, the ratio of the dise	d in pa charge	arallel between two es in the larger to				
	a)	4	b)	16	c)	32	d)	64				
19	Sud	den and turbulent pas	sage	of water from a super	critic	al state to sub critica	al state	e is known as				
8	a)	Hydraulic gradient	b)	Hydraulic jump	c)	Hydraulic mean radius	d)	Hydraulic depth				
20	Spe	Specific energy of a flowing fluid per unit weight is equal to										
	a)	$P/w + v^2/2g$	b)	P/w + h	c)	h + v²/2g	d)	$P/w + v^2/2g + h$				
21	An i	An ideal vertical curve to join two gradients, is										
	a)	circular	b)	parabolic	c)	elliptical	d)	hyperbolic				

12

22 The real image of an object formed by the objective, must lie											
		a)	in the plane of cross hairs	b)	at * the centre of the telescope	c)	at the optical centre of the eye- piece	d)	nywhere inside the telescope.		
	23	Clos	ed contours of decrea	entre	, represent						
		a)	a hill	b)	a depression	c)	a saddle or pass	d)	a river bed		
	24		- is a term used that p	revei	nts the needle from poi	inting	g to the magnetic noi	rth in	a given locality		
		a)	Local attraction	b)	declination	c)	deviation	d)	Local distraction		
	25	The line drawn through the points of same declination									
		a)	Polygonic	a)	Isogonic	a)	syngonic	a)	Agonic		
	26	A lir of e clos a)	ne of levels has been ru levation +125.45m. Th ing error of the survey -0.06m	un fr ie su v wor a)	om a benchmark of ele m of back sights is 17.5 k is 0.03m	vatio 8m a a)	n +125.42m and end nd the sum of foresig -0.03m	ls at a ghts is a)	nother bench mark 5 17.61m. The 0.06m		
A relatively fixed point of known elevation above the datum is called						m is called					
		a)	Bench mark	b)	Datum point	c)	Reduced level	d)	Reference point		
28 A total station is a combination of											
		a)	EDM and Theodolite	b)	Compass and EDM	c)	Electronic Theodolite and EDM	d)	EDM and Electronic compass		
	29	Whi	ich of the following inc	dicate	es the principle of GPS						
		a)	Resection	b)	Trilateration	c)	Trisection	d)	Traversing		
	30	The minimum number of satellites needed for a GPS to determine its position precisely							ely		
		a)	2	b)	3	c)	4	d)	24		
	31	In a liqu a)	liquid limit test, the m id limit of the soil, is 35%	b)	ure content at 10 blows	s was c)	570% and that at 100) blow d)	s was 20%. The none of these		
	32	Whe	en drainage is permitt	ed.u	nder initially applied no	ormal	stress only and full p	orimai	rily consolidation is		
	44	a)	quick test	b)	drained test	c)	consolidated	d)	none of these.		
	33	A co g/cr soil	ompacted soil sample on ³ . If the specific gravi	using ty of	10% moisture content soil particles and wate	has r are	a weight of 200 g and 2.7 and 1.0, the deg	d mas ree of	s unit weight of 2.0 saturation of the		
		a)	11.1%	b)	55.6%	c)	69.6%	d)	none of these.		
	34	The	coefficient of curvatu	re is	defined						
		a)	D ₆₀	b)	<i>D</i> ₁₀	c)	D30 ²	d)	D10 ²		
			D ₁₀		D ₆₀		D ₆₀ D ₁₀		$D_{30}D_{60}$		
35 The liquid limit and plastic limit exist in											
		a)	sandy soils	b)	silty soils	c)	gravel soils	d)	clay soils		

12

-

11

4

36	The ratio of settlement at any time 't' to the final settlement, is known as								
	a) co-efficient of consolidation	b) degree of consolidation	c) consolidation index	d) cons undi	olidation of sturbed soil				
37	Fundamental relationship between dry density (γ), specific gravity (G), water content (ω) and percentage of air voids (na) is :								
	a) $\frac{(1 - n_a)G \gamma \omega}{1 + \omega G}$	b) $\frac{(1 + n_a)G. \gamma \omega}{1 + \omega G}$	c) $\frac{(1+n_s)G. \gamma \omega}{1-\omega G}$	d) <u>(1</u> -	n _a)G. γω 1 - ωG				
38	If the coefficient of the active pressure Ka is 1/3, the coefficient of passive pressure Kp, is								
	a) 1/3	b) 2/3	c) 1	d) 3					
39	A cylinder of clayey soil fails under axial vertical stress of $20t/m^2$ when it is laterally unconfined. The failure plane makes an angle of 45° with the horizontal. The cohesion of soil sample will be a) $10 t/m^2$ b) $20 t/m^2$ c) $14.14 t/m^2$ d) $28.28 t/m^2$								
40	40 Field test for determining shear strength of soil is								
	a) Vane shear test	b) Direct shear test	c) Triaxial shear test	d) UCS I	test				
41	Separation of coarse aggregates from mortar during transportation, is known								
	a) bleeding	b) creeping	c) segregation	d) shrin	kage				
42	Workability of concrete f	for a given water conten	t is good if the aggregates, a	re					
	a) rounded aggregate	b) irregular aggrega	te c) angular aggregate	e d) flaky	aggregates.				
43	Efflorescence in cement is caused due to an excess of								
	a) alumina	b) iron oxide	c) silica	d) alkali	S				
44	Sands of zone I are								
	a) coarse	b) medium	c) medium to fine	d) fine.					
45	Di-calcium silicate (C2S)								
3	a) hydrates rapidly	b) generates less he of hydration	at c) hardens rapidly	d) provid ultima	des less ate strength mont				
46	Bulking of sand is								
	a) mixing of different sizes of sand particles	 b) mixing of lime wit sand 	th c) maximum water with sand	d) swelli when	ng of sand wetted.				
47	Pessimistic and optimistic time for completing an activity are given as 10days and 4days respectively, the variance of the activity will be								
40	a) 1	b) 6	c) 12	d) 18					
48	The time by which an activity completion time can be delayed without affecting the start of the succeeding activities is known as								
	a) Duration	b) Total float	c) Free float	d) Interfe	ering float				
49	When an offer with certain terms and conditions is given in written form it is call as								
50	a) Tender	b) Contract	c) Agreement	d) Notice	2				
50	ine development of first 2	28 days strength is on ac	count of the hydration of						
	a) C_2S	b) C₃S	c) C ₃ A	d) C₄AF					
