1.2

Reg No.:____

F

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Sixth Semester B.Tech Degree Examination June 2022 (2019 Scheme)

Course Code: EET308

MDDFUENSI

Ir .

Pages:

Max. N	larks	: 50	nan	ne: COMPREHEN	121	VE COURSE WOR	K	Duration: 1Hou			
Instructions: (1) Each question carries (2) Total number of ques (3) All questions are to b which only ONE is corre (4) If more than one opti				rs one mark. No negative marks for wrong answers stions: 50 be answered. Each question will be followed by 4 possible answers of ect. ion is chosen, it will not be considered for valuation.							
1.	A c val	coil of resistance 55 ue of current in the	2 an circ	d inductance of 7 H i uit is	is sw	vitched to a 230V suppl	у. Т	he steady state			
	a)	46 A	b)	23A	c)	32.85A	d)	12A			
2.	Ac	A dc series motor should always be started with load because									
	a)	At no load, it will rotate at dangerously high speed	b)	It will fail to start	c)	It will not develop high starting torque	d)	All are true			
3.	Bin	Binary equivalent of (45.312) ₈ is									
	a)	(100101.011001010)2	b)	(000100.011001111) ₂	c)	$(1000111.01111010)_2$	d)	(100101.011110010);			
4.	Ap	A power system will have greater flexibility of operation if they have									
,	a)	Only Base load plants operating in combination	b)	Various types of power plants operating in combination	c)	Only Peak load plants operating in combination	d)	Only thermal power plants operating in combination			
5.	Cor	Compute the energy and power of signal $x(t) = 4\sin(2\pi t)$, $-\infty < t < \infty$									
t_q	a)	0,8	b)	∞,0	c)	∞, 8	d)	2,∞			
6.	The	venin's Impedance	can	be found out by							
-	a)	Short circuiting all independent current sources and open circuiting all independent voltage sources	b)	Short circuiting all independent voltage sources and open circuiting all independent current sources	c)	Short circuiting all independent voltage sources and current sources	d)	Open circuiting all independent voltage sources and current sources			
7.	In a	In a transformer the voltage regulation will be zero when it operates at									
	a)	Unity power factor	b)	Leading power factor	c)	Lagging power factor	d)	Zero power factor			

-2

1

8.	An hexa decimal	decimal to bi symbol by its	inary	conversion can be a binary equivalent	ccor	nplished by simply rep	lacin	g each hexa		
	a)	2-bit	b)	3-bit	c)	4-bit	d)	5-bit		
9.	A protection system engineer is planning to provide the complete protection, he can achieve the by									
	a) a tv fau thre rela	vo phase lt relays and ee earth fault	b)	a two phase fault relays and two earth fault relays	c)	two phase fault relays and three earth fault relays	d),	three phase fault relays and two earth fault relays		
10.	Which of the following represent Signum function "sgn (t)" for $t > 0$, $t = 0$, $t < 0$									
	a) 1,0	,1	b)	-1,1,1	c)	1,0, -1	d)	0,1,1		
11	An electrical network has a graph of 7 branches and 4 nodes. The number of links is									
	a) 5		b)	4	c)	3	d)	2		
12	The emf	induced in th	e pri	mary of a transforme	er			· · · · · · · · · · · · · · · · · · ·		
	a) Is in the	n phase with flux	b)	Lags behind the flux by 90 degree.	c)	Leads the flux by 90 degree	d)	Is in phase opposition to that of flux		
13	Decimal	equivalent of	the	single-precision floa	ting	point number (110000	0010	100000) is		
	a)	-5.05	b)	-5.02	c)	-5.0	d)	-5.1		
14	The area under the load curve represents									
· · ·	a) max dem	kimum land	b)	load factor	c)	the average load on power system	d)	number of units generated		
15	Which o (A) $v(t)$:	f the followin = $x(-t)$ (B) y	g sta (t) =	tements is true about $\mathbf{x} (4t) = (C) \mathbf{y}(t) = d_{12}$	t the $r(t)/r(t)$	given three continuous	time	e systems		
)	a) All inva	are time ariant	b)	A is time varying B is time varying C is time- invariant ween two ideally cou	c)	A is time invariant B is time invariant C is time varying	d)	A is time varying B is time invariant C is time varying		
	a) 16 I	H	·b)	2 H	c)	4 H	d)	8 H		
17	The driv	e motor used	in a 1	nixer-grinder is a	,					
Ŷ	a) DC r	notor	b)	Induction motor	c)	Synchronous motor	d)	Universal motor		
18	The Boo	lean function	F(A,	B, C) = $\Sigma(3, 4, 6, 7)$	is eq	uivalent to				
	a) AB-	+BC'+AC	b)	A'B+BC+AC	c)	AB+BC+AC'	d)	AB+BC'+AC'		
19	If all the	sequence volt	tages	at the fault point in	a po	wer system are equal, t	hen	fault is		
	a) LLC	G fault	b)	Line to Line fault	c)	Three phase to ground fault	d)	LG fault		
20	20 The system is causal when the current output sample depends on									
	a) curr sam	ent input ple	b)	current or next and past input samples	c)	current and/or past input samples and/or past output samples	d)	next or past input samples or past output sample		

The effective inductance of given circuit is

.2

21

. 2

.

.

32	In DC generators, armature reaction is produced actually by									
	a) Its field current	b) Armatureconductors	c) Field pole winding	d)	Load current in armature					
33	The number of select	lines for 16 to 1 multiples	xer is							
	a) 4	b) 5	c) 16	d)	6					
34	Which of the followir hammer phenomenon	ng element of hydroelectri	ic power plant prevents the	pens	tock from water					
	a) Surge Lank	b) Draft tubes	c) Spillway	d)	Valves and Gates					
35	FS representation of a	a periodic DT signal is								
	a) aperiodic	b) periodic	c) continuous	d)	discrete and aperiodic					
36	For the given circuit,	calculate the open circuit	driving point input impeda	nce						
	$+0$ I_1 I_1 I_2									
	V ₁	<u> <u> </u> <i>§</i>_{5Ω} </u>	V ₂							
		```								
	-0		—							
	1		2'							
	a) 5Ω	b) 10 Ω	c) 20 Ω	d)	15 Ω					
37	As compared to shunt and compound DC motors, the series DC motor will have the highest torque because of its comparatively									
	a) Lower armature resistance	b) Stronger series field	c) Fewer series turns	d)	Larger armature current					
38	For JK flip flop with J	J=1, K=0, the output after	clock pulse will be							
	a) 0	b) 1	c) high impedance	d)	no change.					
39	Which of the followin	ig is an essential requirem	ent for a peak load plant?							
	a) Economical and speedy repair .	 b) Capability of working continuously 	c) Low operating cost	d)	Capability of quick start					
40	The relation between Laplace domain and Z domain is									
	a) $Z = e^{sT}$	b) $Z = e^{jsT}$	c) $S = e^{ZT} (d)$	d)	$Z = e^{-sT}$					
41	Driving point impedat	nce is defined as								
÷	 a) The ratio of transform voltage to transform current at the 	b) The ratio of transform voltage at one port to transform current at the other port	c) Both a and b	d)	None of the above					
42	A 4 pole lap wound do	c shunt motor rotates at th	e speed of 1500 rpm, has a	flux	of 0.4mWb and					
	a) 100 Volts	b) 0.1 Volts	c) 1 Volt	d)	10 Volts					

12

43	The circuit which changes from serial data to parallel data is								
	a)	COUNTER	b)	MULTIPLEXER	c)	DEMULTIPLEXER	d)	FLIP-FLOP	
44	What of the below mentioned statements are incorrect as compared to the HVDC system?								
	a)	Distance limitation	b)	Back to back connection is possible	c)	Extra reactive power compensation	d)	More corona losses	
45	Z transform reduces to Fourier transform when it is evaluated on								
	a)	a half circle	b)	Z circle	c)	unit circle	d)	imaginary circle	
46	The initial value of $20 - 10t - e^{25t}$ is								
	a)	20	b)	19	c)	10	d)	25	
47	In a dc shunt motor the terminal voltage is halved while the torque is kept constant. The resulting approximate variation in speed ' ω ' and armature current 'I _a ' will be								
	a)	Both ω and I_a are doubled	b)	ω is constant and I _a is doubled	c)	ω is doubled while I _a is halved	d)	ω is constant but I _a is halved	
48	Which of the following circuit can be designed using shift register?								
	a)	Ring counter	b)	Asynchronous up counters	c)	Asynchronous down counters	d)	BCD to Decimal converter	
49	Which of the following power plants can be profitably employed for supplying base loads as we as peak loads?								
	a)	Diesel power plant	b)	Hydroelectric power plant	c)	Thermal power plant	d)	Nuclear power plant	
50	When the system has poles inside the unit circle in Z domain,								
	a)	the system is stable and its impulse response is a decaying function	b)	time domain behaviour will be exponentially rising signal	c)	the system is unstable	d)	the impulse response is marginally constant	