7.

Transformer ratings are given in

a) a) HP

0600MRT308052201

Reg N	No.:				Nam		UCATI	CAR PER S
		APJ ABDU	L K	ALAM TECHNOLO	GIO	CAL UNIVERSIT	Y	de la companya dela companya dela companya dela companya de la com
				ch Degree Examinati		11 - 1 - 1	ieme)	34/5
				Course Code: M	RT3	308	200	
			me:	COMPREHENSI	VE	COURSE WOR	K	
Max. Max	arks:	50						Duration: 1Hou
Instructio	ns:	(2) Total number of qu (3) All questions are to which only ONE is co	uestio be a rrect.	ne mark. No negative manns: 50 nswered. Each question is chosen, it will not be o	will b	e followed by 4 possibl	le ansv	vers of
1.	The	Condition for maxis	mum	efficiency of a trans	form	er		
2.	a) For	Eddy current losses=stray losses starting a DC Motor		Hysteresis losses=eddy current losses tarter is required for	c)	Copper losses=0	d)	Variable losses=constant losses
à	a)	It limits the speed of motor	b)	It limits the starting current to a safe value	c)	It starts the motor	d)	None of the above
3.	Arm	nature reaction in a g	gener					
,	a)	Demagnetization of leading pole tip and magnetization of trailing pole tip	b)	Demagnetization of trailing pole tip and magnetization of leading pole tip	c)	Demagnetizing the center of all poles	d)	Magnetizing the center of all poles
4.	The		f the	D.C. generator is the	resi	stance of		
	a)	Field	b)	Brushes	c)	Armature	d)	Load
5. *	The	commutator segmen	nts a	re connected to the ar	matı	ire conductors by n	neans	of .
	a)	Copper lugs	b)	Resistance wires	c)	Insulation pads	d)	Brazing
6.	Wha	at is the function of a	a trai	nsformer?				
	a)	Transformer is used to step down or up the AC voltages and currents	b)	Transformer is used to step down or up the DC voltages and currents	c)	Transformer converts DC to AC voltages	d)	Transformer converts AC to DC voltages

b) kVA c) kVAR

d) Kw

8.		An	induction motor is id	denti	cal to							
		a)	D.C. compound motor	b)*	D.C. series motor	c)	Synchronous motor	d)	Asynchronous motor			
9.		What will happen if the relative speed between the rotating flux of stator and rotor of the induction motor is zero?										
		a)	The slip of the motor will be 5%	b)	The rotor will not run	c)	The rotor will run at very high speed	d)	The torque produced will be very large			
10.		In a synchronous motor, damper windings are provided on										
		a)	Stator frame		Rotor shaft		Pole faces	d)	None of the above			
11		The maximum efficiency of resistance loaded class A power amplifier is										
		a)	5%	b)	35%	c)	25%	d)	50%			
12		An	oscillator employs		feedback							
		a)	Positive		Negative	c)	Neither positive nor negative	d)	Data Insufficien			
13		In a multiplexer the output depends on its										
		a)	Data inputs	,	Select inputs		Select outputs	d)	Enable pin			
14			. •		equired for a 1-to-8 de		-					
		a)	2	b)		c)		d)	5			
15		Wh	ich A/D converter is	con	sidered to be simples	t, fas	stest and most exper	nsive	?			
		a)	Servo converter	b)	Counter type ADC	c)	Flash type ADC	d)	All of the mentioned			
16			Morgan's theorem st									
		a)	(AB)' = A' + B'	b)	(A+B)' = A' * B	c)	A' + B' = A'B'	d)	(AB)' = A' + B			
17		The prime implicant which has at least one element that is not present in any other implicant is known as										
		150	Essential Prime Implicant .		Implicant	c)	Complement	d)	Prime Complement			
18		Wh	at is Barkhausen crit									
*		a)	AB> 1	b)	Aß< 1	c)	AB = 1	d)	$AB \neq 1$			
19		Ref	lected binary code is	also	known as							
		a)	BCD code	b)	Binary code	c)	ASCII code	d)	Gray Code			
20		Con	vert binary number	into	gray code: 100101.							
		a)	101101	b)	001110	c)	110111	d)	111001			
21 ,	e.	Wh	ich of the following	is no	ot a property of TRAI	o inte	errupt in microproc	essor	?			
		a)	It is a non- maskable interrupt	b)	It is of highest priority	c)	It uses edge- triggered signal	d)	It is a vectored interrupt			

22	Wh	Which of the following flag is used to mask INTR interrupt?											
	a)	Zero flag	b)	Auxiliary carry flag	c)	Interrupt flag	d)	Sign flag					
23	Ho	w many address line	s are	present in 8086 micr	opro	cessor?							
	a)	16	b)	20	c)	32	d)	40					
24	Wh	ich of the following	is no	ot a status flag in mic	ropro	ocessor?							
	a)	Overflow flag	b)	Direction flag	c)	Interrupt flag	d)	Index flag					
25	_	converts the programs written in assembly language into machine instructions.											
	a)	Machine compiler	b)	Interpreter	c)	Assembler	d)	Converter					
26	Ho	w many bytes of bit	addr	essable memory is pr	esen	in 8051 based mic	rocor	itrollers?					
	a)	8 bytes	b)	32 bytes	c)	16 bytes	d)	128 bytes					
27	Inst	Instructions which won't appear in the object program are called as											
	a)	Redundant instructions	ŕ	Exceptions	c)	Comments	d)	Assembler Directives					
28	Wh	ich of the following											
20	a)	Trap flag	,	Auxiliary carry flag	c)	Parity flag	d)	Zero flag					
29		of series has how ma	•										
20	a)		b)		c)	1	d)	0					
30		_		ck then the stack poin									
,	a)	Increases with every push	b)	Decreases with every push	c)	Increases & decreases with every push	d)	None of the mentioned					
31	The	The ideal hydraulic rotary actuator provides shaft torque T, which is											
42	a)	Equal to displaced volume measured		Inversely proportional to displaced volume measured	c)	Proportional to differential pressure	d)	Inversely proportional to differential pressure					
32	Sen	sor effectiveness de	pend	s on paramet	er.			•					
	a)	Sensitivity	b)	Radiation	c)	Resistivity	d)	All the above					
33	Sen	sor provides output	sign	al depending on		<u>.</u>							
		Input		Physical quantity	c)	Both A and B	d)	None of the above					
34	A li	inear transfer function	n is	also called as				19					
	a)	System transfer function	b)	Component transfer fucntion	c)	Constant transfer function	d)	Both a and c					

35	T	he basic function of	the s	spring in a control val	ve is	to		
26	a) Characterize flow	w b	Oppose the diaphragm so as to position the valve according to signal pressure	c)		d)	Open the valve if air failure occurs
36		oximity sensors are	used	to				
	a)	Detect non magnetic but conductive material	b)	Measure strain	c)	Measure distance	d)	Measure temperature
37	A	valve positioned						
20	a)	of a cascade control system	b)	precise valve position	c)	pneumatic controller in	d)	Provides a remote indication of valve position
38	Th	e characteristic that	prov	ides an output with re	spec	t to the relation w	ith the	input is called as
	a)	Calibration of a system	b)	Response of a system	c)	Characteristic relation of a	d)	Instrumentation of a system
39	The fro	e process of establis m the instrument is	hmei calle	nt of a relationship be d as	twee	system on the input to the	instrun	nent and output
40	a)	Static sensitivity	b)	Static characterization	c)	Static accuracy	d)	Static calibration
40	001	measured:	surer	nent system comes in	con	tact with the meas	urand	or the quantity to
41	a)	Transducer Stage	b)	Signal Processor Stage		Output Stage	d)	None of the above
41			ontro	l system increases, the	e ste	ady-state error of t	the sys	stem
42	a)	Decreases	b)	Increase	c)	Remains unchanged	d)	May increase or decrease
42	200	steady-state error is						
	a)	A independent of the type of input	b)	A function of the transient response	c)	Zero for all inputs to type 1	d)	Decreased by increasing gain.
43	Ben	efits of feedback				system		*
	a)	Performance of system is greater	b)	Need for system much larger path gain and system instability	c)	Controlled variable accurately follows the desired value	d)	Affected by parameter variations
44	The	bode plot is used to	anal	yse which of the follo	wing	g?		
		Minimum phase network	b)	Lag lead network		Maximum phase network		All phase

43	In	e bode plot is a plot	t relat	ing log w with mag	nitude	in ecibel and		
	a)	Phase angle	b)		c)		, d)	None of the
46	-	- daily cocificies	IIVS WI	n cannot be applied nich is	when	the characteristic	equati	above on of the system
47		Negative real and exponential functions of s		Negative real, both exponential and sinusoidal function of.s. ynomial $S^4 + S^3 +$	c) 2s ² +	Both exponential and sinusoidal functions of s $2s + 3 = 0$ has	d)	Complex, both exponential and sinusoidal functions of s.
	a)	Zero roots in RHS of s-plane	b)	One root in RHS of s-plane	c)	Two roots in RHS of s-plane	d)	Three roots in RHS of s-plane
48	Wh	ich of the following	s is us	ed in time domain t	echnic	que in control syste	em	
	a)	Routh-Hurwitz	b)	Bode plot	c)	Root locus	d)	Nyquist criterion
49	Whi	ich among the follo	wing	is a disadvantage of	mode	ern control theory?		
*	a)	Implementation of optimal design	b)	Transfer function can also be defined for different initial conditions	c)	Analysis of all systems take place	d)	Necessity of computational work
50	Whi	ch among the follow	wing i	s a unique model of	f a sys	tem?		
	a)	Transfer function		State variable	c)	Both a and b	d)	None of the