							- //	
Reg l	No.:				Nan	ne:		
		APJ ABDU	L KA	LAM TECHNOL	OGI	CAL UNIVERSIT	Г	引到一个人
	Sixt	h Semester B.Tech	ı Deg	ree Regular and Su	ppler	nentary Examination	on Jul	[y 202]
								A COLORED
								MERUTHO
				Course Code: I	ME3	52		
		Course	Nam	e: COMPREHE				
Max. N	Marks:	50						Duration: 1Hour
nstru	ctions:	(1) Each auestia	n car	ries one mark. No	nega	tive marks for wro	ng ai	nswers
		(2) Total numbe				are marne jor me		
		(3) All questions	are t	o be answered. Eac	ch qı	uestion will be follo	owed	by 4 possible
			-	y ONE is correct.	• * * *		C	
		(4) If more than (5) Calculators (option is chosen, it	will .	not be considered j	tor va	iluation.
		(3) Calculators	are no	PART A- COMN	10 N	COURSES		
l.	Unit	normal to the surfa	ace z	= y in the positive				
	a)			$-\hat{j} - \hat{k}$				$-\hat{\imath} + \hat{k}$
)				-j - k erential equation y				
	a)						d)	
		-		$\frac{e^x}{3}$				$\frac{e^x}{6}$
3.				drawn from variou	is po	ints on the contour	ofa	n object to meet a
		are called as		_			2.45	
	a)	connecting lines	(b)	projectors	c)	perpendicular lines	(d)	hidden lines.
1. >	Whei	-	n line	s converge in a pers	spect			
		-		The ground line			(d)	The eve point
	a)	line	(0)	The ground line	C)	point	(u)	The eye point
5.	The p	orinciple of transm	issibi	lity of force states t	hat v	when a force acts up	on a	body its effect is
*	a)	Same at every	(b)	Same at every	c)	Different at	(d)	Nullified by the
		point in its line		point of the body		different point		internal forces
		of action		along any		in its line of		present in the
5.	A free	hody diagram sh	ould c	direction contain all the extern	nal fo	action	ione	body already
).	Allec	1.00		nder consideration.	nai i	orces, support react	.10115	and the
	a)	Internal forces	(b)	Internal	c)	Self weight of	(4)	None of these
	aj	Internal forces	(0)	moments	٠,	the body	(u)	none of these
7.	What	makes the best pr	actice	e available to every	one,		ficier	ncy and safety
	a)	Drawings	(b)		c)	Tolerance Limit	(d)	Material Cost
				Codes				

8.	Which of the following components in a "House of Quality" drives the entire QFD process?										
	a) Roof ma	trix (b	Product characteristics	c)	Relationship matrix	(d)	Customer requirements				
9.	Biodiversity ca	nnot be con					requirements				
	a) Seed bar	ık (b) Deforestation	c)	Botanical Garden	(d)	cryopreservation				
10.	Which of the ISO 14000 series of standards focuses on Life Cycle Assessment										
	a) 14010	(b)	14020	c)	14030	(d)	14040				
			PART B - CO	RE C	OURSES						
11.	The ratio of maximum stress intensity due to suddenly applied load and due to gradually applied load is:										
	a) 1	b)	2	c)	1/2	d)	4				
12.	Strain energy sto	ored in solid	l circular shaft is pr	oportio	onal to:						
	a) GJ	b)	1/GJ	c)	$1/(GJ)^2$	d)	$(GJ)^2$				
13.	Point of contra-	lexure occu	rs only in:								
	a) Cantilever	beam b)	Simply supported beam	c) ,	Continuous beam	d)	Overhanging beam				
14.	If the depth and length of a simply supported beam subjected to UDL over the whole span is doubled, then the maximum bending stress in the beam is changed by a factor of:										
	a) 4	b)	1/4	c)	1/2	d)	1				
15.	The maximum p	rincipal stre	ess theory is also kn	own as	s:						
• •	a) Beltramin's theory	,	theory	c)	Rankines's theory	d)	Von Mises theory				
16.	For a circular column having its ends hinged, the slenderness ratio is 160. The L/D ratio of the column is:										
	a) 80	. b)	57	c)	40	d)	20				
17.	In Mohr circle m	ethod shear	stresses are represe	ented o	n:						
*	a) X axis	b)	Y axis	c)	Z axis	d)	XY plane				
18.	Which one of the temperature?	e following	g law of thermodyr	namics	forms the basis f	or the	measurement of				
	a) Zeroth law of thermodyna	,	First law of thermodynamics	c)	Second law of thermodynamics	d)	Third law of thermodynamics				
19.	If value of polytr the process is known		"n" is infinitely larg			, pv ⁿ =					
	a) Isochoric Pr	ocess b)	Isobaric Process	c)	Isothermal Process	d) ,	Isenthalpic Process				
20.	The door of a r		rigerator inside an	isolate		t ope	n. Which of the				

21.	a) Fo	cooled to the temperature inside the refrigerator	, -,	cooled very slightly	c)	be gradually warmed up	d)	of the air in room will remain unaffected
21.				ving process the work			s zero):
22		Constant volume		Free expansion		Throttling	d)	All of the above
22.	In	which condition the	real	gas behaviour deviat	es fr	om the ideal gas be	ehavi	our:
	a)	Pressure is very low and temperature is very high		Pressure is very high and temperature is low		high and temperature is very high	d)	Pressure is very low and temperature is very low
23.	Bo	mb calorimeter is us	ed to	o find the calorific va	lue o	of:		j
	a)	Solid fuels	b)	Liquid Fuels	c)	Gaseous Fuels	d)	All type of fuels
24.	pia	e force exerted by ε te te given by:	ı jet	of water on a movin	ig ve	ertical plate, in the	dire	ction of motion of
	a)	$\rho a V^2$	b)	$\rho a V^3$	c)	$\rho a(V-u)^2$	<u>d)</u>	$\rho a(V-u)^3$
25.	Cav	vitation damage in tu		e runner occurs near	,	ρα(• α)	u)	pu(v-u)
	a)	Inlet on the convex side of blades		Outlet on the convex side of	c)	Inlet on the concave side of	,	Outlet on the concave side of
26.	Wh not		quire	blades ements of net positiv	e su	blades ction head (NPSH) for	blades a given pump are
	a)	The pump will get cavitated	b)	consume more		The pump will not develop head	d)	The pump will have a low efficiency
27.	In a	reciprocating pump	the	air vessels are used for	or w	hich of the followi	ng pu	rposes?
٧	a)	To get continuous supply of liquid at a uniform rate	b)	To save the power required to drive the pump	c)	at much higher speed without any danger of	d)	All of the above
28.	The	- most efficient metl	nod o	of compressing air is	= to co	separation ompress it:		
	a)	Isothermally		Adiabatically	c)	Isentropically	d)	Isochorically
29.	Rota	ary compressor can l			۸.	, and the same of)	isochorically
	a)	Displacement compressor	b)	Steady-flow compressor	c)	Both of the above	d)	None of the above
30.	Criti to be	cal Resolved Shear initiated.	Stre	ss (CRSS) is the	• • • • •	mentioned stress required	for pla	mentioned astic deformation
	a)	Maximum	b)	Minimum	c)	Average	d)	None of the above

31.	Hall-Petch relationship states the relation between stress and												
	a)	Grain shape	b)	Grain orientation	c)	Grain boundary	d)	Grain size					
32.	Eutectoid composition in Fe-C phase diagram occurs at:												
	a)	0.76 wt. % C	b)	2.13 wt.% C	c)	4.1 wt.% C	d)	1.2 wt.% C					
33.	Higher the degree of deformation, recrystallization temperature is												
	a)	Higher	b)	Lower	c)	No effect	d)	Either higher or lower					
34.	Fac	Factors affecting fatigue are:											
25	a)	Stress concentration	b)	Residual stresses	c)	Surface roughness	d)	All of the above					
35.		ffith theory is for:	1.	D tall C	- \	Classia	71.	Defermation					
26	a)	Ductile fracture	b)	Brittle fracture	c)	Cleavage	d)	Deformation					
36.		ep occurs due to:	• •			0-1-11-1	15	· · · · · · · · · · · · · · · · · · ·					
	a)	Constant load		Varying load		Gradual load	d)	Impact load					
37.	Given α is bend angle in radians, R is bend radius, T is sheet thickness and k is a constant related to bending, the equation for bend allowance is:												
	a)	$\alpha^2(R+kT)$	b)	α (R-kT)	c)	$\alpha^{2}(R-kT)$	d)	α (R+kT)					
38.	An expendable pattern is used in:												
	a)	Slush casting	b)	Squeeze casting	c)	Centrifugal casting	d)	Investment casting					
39.	Ceramic ferrules are used in:												
	a)	TIG welding		Stud welding	c)	Arc welding	d)	Percussion welding					
40.	The major problem in hot extrusion is:												
	a)	Design of die	b)	Design of punch	c)	Wear and tear of die	d)	Wear and tear of punch					
41.	Wh	ich of the following	is no	ot a type of rolling m	ill:								
٠	a)	Separation rolling mill	b)	Three-high rolling mill	c)	Cluster rolling mill	d)	Tandem rolling mill					
42.	Jig	is a device used to:		₹ gament				•					
	a)	Locate and clamp the work piece and guide the tool	b)	Clamp the work piece	c)	Locate the work piece	d)	Hold the cutting tool					
43.	The	acetylene cylinder	is fil	led with for	stabi	lizing the gas.							
	a)	Calcium carbide	b)	Calcium oxide	c)	Acetone	d)	Acetylene					
44.	A man is climbing up a ladder. When he was half way up, he starts slipping. The path traced by the man is:												
	a)	Parabola	b)	Hyperbola	c)	Circle	d)	Ellipse					

45.	111 6	in a call follower motion, the follower has constant acceleration when it moves with:									
	a)	Simple Harmonic Motion	b)	Cycloidal motion	c)	Polynomial motion	d)	Parabolic motion			
46.	The	e size of the cam dep	end	s on:				,			
	a)	Prime circle	b)	Cam circle	c)	Pitch circle	d)	Base circle			
47.	Increase in center distance between gears with involute profile results in:										
	a)	Increase of pressure angle	b)	Decrease of pressure angle	c)	Does not change the pressure angle	d)	None of these			
48.	Two gears A & B with equal number of teeth are in mesh and connected by arm rotating at 1rpm. Gear A is fixed. Then the rpm of Gear B is:										
	a)	1	b)	3	c)	2	d)	4			
49.	The	gear train usually e	mplo	yed in clocks is a:							
	a)	Simple gear train	b)	Sun & Planet gear train	c)	Reverted gear train	d)	Differential gear train			
50.	The synthesis of mechanism deals with:										
	a)	The determination of input and output angles of a mechanism	b)	The determination of dimensions of the links in a mechanism	c)	The determination of displacement, velocity and acceleration of the links in a mechanism	d)	None of the above			