Reg No.:

F

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Sixth Semester B.Tech Degree Examination June 2022 (2019 Scheme)

Course Code: MET308 Course name: COMPREHENSIVE COURSE WORK

Max. Marks: 50							Duration: 1Hour		
Instructions: (1) E (2) 1 (3) 2 whic (4) E		(1) Each question car (2) Total number of q (3) All questions are t which only ONE is co (4) If more than one o	ries o uestic o be c rrect. option	ne mark. No negative m ons: 50 answered. Each question is chosen, it will not be	arks f will l consi	for wrong answers be followed by 4 possil dered for valuation.	ole ans	wers of	
1.	Wh	ich one of the follow	ving	mechanisms represen	resents an inversion of single slider crank chain?				
	a)	Elliptical trammel	b)	Oldham's coupling	c)	Whitworth quick return mechanism	d)	Pantograph	
2.	Ap	olanar mechanism ha	s 10	links and 12 joints.	The d	legree of freedom of	of the	mechanism is	
	a)	1	b)	3	c)	2	d)	4	
3.	Nu	mber of instantaneou	is ce	ntres of rotation for a	ı 6-li	nk mechanism are			
	a)	4	b)	6	c)	12	d)	15	
4.	Pre	ssure angle of a cam	is d	irectly proportional t	0				
5	a) For	Pitch circle diameter	b)	Prime circle diameter	c)	Lift of cam	d)	Base circle diameter g circle will be	
5.	FOI			s tonowing cycloid					
6	a) Wh	5 2/l	D)	5/2/l	C)	ZIL/S	a)	2/(+5	
0.	w n	inch of the following	mec		raigi		anish		
4	a)	Watt's mechanism	b)	Robert's mechanism	c)	Peaucellier mechanism	d)	All of these	
7.	Transmission angle is the angle between the								
	a)	Output link and frame	b)	Output link and coupler	c)	Input link and frame	d)	Input link and coupler	
8.	The	e Coriolis componen	tofa	acceleration is taken	into a	account for			
	a)	Slider crank mechanism	b)	Four bar chain mechanism	c)	Quick return motion mechanism	d)	All of these	
9.	The component of the acceleration, parallel to the velocity of the particle, at the given instant is								

called

2

	a)	Radial component	b)	Tangential	c)	Coriolis	d)	None of these		
10.	For low and moderate speed engines the cam follower should move with									
	a)	Cycloidal motion	b)	Simple Harmonic Motion	c)	Uniform velocity	d)	Uniform acceleration and retardation		
11.	Wh	Which sand is used for making ferrous and non-ferrous alloys								
	a)	Natural sand	b)	Synthetic sand	c)	Loam sand	d)	Refractory sand		
12.	Which among the following wood is most widely used for making patterns									
	a)	White Pine	b)	Mahogany	c)	Teak	d)	Maple		
13.	Wh	ich of the following	has	the most magnitude i	n rol	ling				
	a)	Slip velocity	b)	Surface velocity	c)	Entering velocity	d)	Exiting velocity		
14.	The	earing defect in the	rolli	ing of the work piece	is no	ot caused by		×		
	a)	Material dependent	b)	Blank holding	c)	Low clearance between the roll	d)	Too high speed		
15.	The	extra metal which s	ettle	s down in the gutter i	is kn	own as				
	a)	Flux	b)) Barrelling	c)) Slag	d)	Flash		
16.	The	distance from the c	enter	of arc to the tip of el	lectro	ode is called				
	a)	Arc length	b)	Arc distance	c)	Arc crater	d)	Arc depth		
17.	Whi	ich of the following	is no	ot included in weldab	ility					
	a)	Ability of mechanical soundness	b)	Serviceability of joint	c)	Strain relieving brittleness	d)	Metallurgical compatibility of metal		
18.	Ast	he grain size of a m	etal i	increases, its strength						
	a)	Decreases	b)	Increases	c)	Remains	d)	No effect		
19.	Whi	ich of the following	metł	nod is used for makin	g cra	ankshafts?				
	a)	Drop forging	b)	Press forging	c)	Open die forging	d)	Closed die forging		
20.	Whi	ich is the operation t	o rel	ive residual stress fro	om th	ne welding joint		5 6		
	a)	Shot peening	b)	post heating	c)	peening	d)	Pre heating		
21.	Whi	ich of the following	is th	e extensive property	of th	e system				
	a)	Volume	b)	Pressure	c)	Temperature	d)	Density		
22.	An i	ideal gas at 27°C is l	heate	ed at constant pressur	e till	its volume become	s thr	ee times. What		
	a)	81°C	b)	327°C	c)	543°C	d)	627°C		

2

23.	For a simple closed s work interactions is i	ystem of constant compo dentifiable as the change	sition, the difference bet in	ween the net heat and							
24	a) Enthalpy	b) Entropy	c) Flow energy	d) Internal Energy							
24.	A 4 kW, 20 litre wate 4 kJ/kg-K. Assuming water temperature is	er heater is switched on for all the electrical energy	or 10 minutes. The heat c has gone into heating the	apacity Cp for water is water, the increase of the							
	a) 15°C	b) 20°C	c) 26 °C	d) 30°C							
. 25.	In throttling process,	which one of the followi	ng parameters remains co	onstant							
	a) Temperature	b) pressure	c) entropy	d) enthalpy							
26.	When a system undergoes a process such that $\int \frac{dQ}{r} = 0$ and $\Delta S > 0$, the process is										
	a) Reversible adiabatic	b) Irreversible adiabatic	c) Isothermal	d) None of these							
27.	For a heat engine ope the sink. The efficient	rating on a Carnot cycle, cy of the engine is	the work output is $1/4^{th}$	of the heat transferred to							
20	a) 25%	D) 30%	c) 20%	d) 33.3%							
28.	Which of the following devices complies with Clausius statement of the second law of thermodynamics										
	 Closed cycle g Internal combination Steam powerp Domestic refri 	gas turbine ustion engine lant gerator									
	a) 1 only	b) 1 and 4 only	c) 2 and 3 only	d) 4 only							
29.	For a given high temp COP of a Carnot heat a) Increases	erature reservoir T ₁ , as th pump b) Decreases	ne difference between T_1	and T_2 increases, the							
30.	Which of the followin	g statements are correct?	c) Does not change	d) Cannot predict							
•	 The entropy of The efficiency substance and Carnot's theore temperature so than a reversib 	a pure crystalline substa of a reversible heat engine depends only on the temp em states that of all heat of urce and a given constant le engine.	ince at absolute zero temp ne is independent of the r perature. engines operating betwee t temperature sink, none	perature is zero. nature of the working on a given constant has a higher efficiency							
	a) 1 and 2 only	b) 1 and 3 only	c) 2 and 3 only	d) 1,2 and 3							
31.	Atomic packing factor	of FCC crystal structure	is								
	a) 0.52	b) 0.58	c) 0.68	d) 0.74							
32.	Number of atoms and	coordination number resp	pectively for a BCC cryst	al structure is							
	a) 2,8	b) 2,12	c) 4,8	d) 6,12							
33.	Edge dislocation is a			, .							
	a) Point imperfection	b) Line imperfection	c) Surface imperfection	d) Volume imperfection							

3

34.	In the study of phase d liquid and solid materia a) Hume-Rothery rule	iagra al pre b)	ms, the rule which he esent in the mixture a Lever rule	elps t t any c)	o calculate the relat given temperature Gibb's phase rule	tive p is kno d)	roportions of own as Empirical rule				
35.	Fe-C alloy containing	less th	han 0.8% carbon is ca	alled			•				
	a) High speed steel	b)	Hypo-eutectoid steel	c)	Hyper- eutectoid steel	d)	Cast iron				
36.	What is the movement of block of atoms along certain crystallographic plane and direction, termed as										
	a) Glide	b)	Twinning	c)	Slip	d)	Jog				
37.	Reaction in which solid phase transforms into two other solid phases on cooling is called										
	a) Peritectic reaction	b)	Eutectic reaction	c)	Peritectoid reaction	d)	Eutectoid reaction				
38.	Gibb's phase rule is given by the second sec	ven b	У								
	[F= Number of degrees a) $F = C+P$	s of fi b)	reedom, $C=$ Number F = C+P-2	of cc c)	F = C-P-2	ber o d)	f phases] F = C-P+2				
39.	TTT diagram shows the	e tim	es required for isothe	rmal	transition from						
	a) Austenite to pearlite	b)	Austenite to ferrite	c)	Ferrite to pearlite	d)	Martensite to pearlite				
40.	Hardenability of steel i	s asso	essed by								
	a) Charpy impact test	b)	Rockwell hardness test	c)	Jominy end quench test	d)	Open hole test				
41.	Unit of surface tension	ı is									
	a) N/m^2	b)	N/m	c)	Nm	d)	Ν				
42.	Relation between poise	and	N sec/ m^2 is								
	a) 1 poise = 1 N sec/ m^2	b)	1 poise = 10 N sec/ m^2	c)	1 poise = 0.1 N sec/ m ²	d)	1 poise = 0.01 N sec/ m ²				
43.	A rectangular block with immersion will be	th spo	ecific gravity x and h	eight	ty when floating in	wate	r, the depth of				
	a) xy	b)	x/y	c)	y/x	d)	None				
44.	In a flow net the angle	in de	grees between stream	line	s and equipotential	lines	is				
	a) 0	b)	45	c)	90	d)	180				
45.	Bernoulli's equation is	law o	of conservation of				•				
	a) mass	b)	momentum	c)	velocity	d)	energy				
46.	While deriving Euler's	equa	tion the following for	rces a	are considered						
	a) Pressure and viscous	b)	Gravity and viscous	c)	Pressure and gravity	d)	Pressure and surface tension				
47.	The variation of shear s	tress	and velocity at a cros	ss se	ction of a circular p	ipe w	then laminar flow				
	a) Both parabolic	b)	Both linear	c)	Linear and parabolic	d)	Parabolic and linear				

48.		The ratio of maximum velocity to average velocity for a laminar flow through a circular pipe is										
	*	a)	1	` b)	1.5	c)	4/3	d)	2			
49.		For cale	the flow of water the culated using	hrogh	the penstocks of	Idukki I	Power plant, the	head los	s due to friction is			
		a)	Hagen- Poiseuille equation	b)	Darcy Weisbach equation	c)	Both	d)	None			
50.		The	type of fluid flow an	alysis	where the observer	r remains	stationery is call	ed				
	i.	a)	Eulerian	b)	Lagrangian	c)	Archimedes	d)	None			
