a) O(logn)

0600CST308052202

	Reg	g No.:			Nam	ne: [4]	3/		The state of the s		
		APJ ABD	UL K	KALAM TECHNOI	LOGI	CAL UNIVERSIT	XS/	VIV.	A CONTRACT		
		Sixth Semester	r B.T	ech Degree Examina	ation Ju	ine 2022 (2019 Sch	eme)	8831/	1		
						*	130	STATE OF A			
							CHE	RUTHUS			
				Course Code:	CST3	308					
		Cours	se na	me: COMPREHEN	NSIVE	COURSE WORK		*			
	Max.	. Marks: 50						Duration: 1H	ou		
	Instru	uctions:									
		(2) Total number of	que: e to b	e answered. Each q				ossible answers o	of.		
				cci. ion is chosen, it will	not be	considered for val	uatio	1.			
	1.	The Inorder and Preorder among the following is t a) debfgca	r trav	ersal of a binary tree	is d b versal	e a f c g and a b d e	cfg ee?		icł		
	2.	Which of the following i	s not	the application of st	ack?	×					
	2.	a) A parenthesis balancing program		Tracking of local variables at run time		Compiler Syntax Analyzer	d)	Data Transfer between two asynchronous processes			
	3.	•									
		a) log 2 n	b)	n/2	c)	$\log 2 n - 1$	d)	n			
	4.	To implement a stack us will you need?	ing q	ueue (with only enqu	ueue ai	nd dequeue operation	ons), h	ow many queue	5		
		a) 1	b)	2	c)	3	d)	4			
	5.	The optimal data structu	re us	ed to solve Tower of	Hanoi	is					
		a) Tree	b)	Heap	-c)	Priority queue	d)	Stack			
	6.	Assume that the operators +, -, X are left associative and ^ is right associative. The order of precedence (from highest to lowest) is ^, X, +, The postfix expression for the infix expression									
		$a + b X c - d ^e ^f is?$									
		a) abc $X + def^{-}$	b)	abc X+ de^f^ -	c)	ab+c Xd – e ^f^	d)) -+aXbc^ ^def			
9	7.	The time complexity of	heap	sort in worst case is							

b) O(n)

c) O(nlogn)

d) O(n²)

8.	Suppose we are sorting an array of eight integers using heapsort, and we have just finished some heapify (either maxheapify or minheapify) operations. The array now looks like this:								
	16	5 14 15 10 12 27 28 ow many heapify oper					-		
		1	b)			3 or 4	d)	5 or 6	
9.	W	hat is the number of ed	dges	present in a complete	,		,	3 01 0	
	a)	(- // -		(n*(n-1))/2	c)		d)	is insufficient	
10. If several elements are competing for the same bucket in the hash table, what							t is	it called?	
	a)	Diffusion	b)	Replication	c)	Collision	d)	Duplication	
11	11 A process which is copied from main memory to secondary memory on the basis of requirement known as								
	a)	Demand paging	b)	Paging	c)	Threads	d)	Segmentation	
12	Fo	r which of the following	ng pi	urposes, Banker's alg	goritl	nm is used?			
. 12		Preventing deadlock		Solving deadlock		Recover from deadlock	d)		
13 Identify the system calls that on termination does not return control to the calling point.								ng point.	
1.4	•	exec		fork	c)	longjmp	,	ioctl	
14	A CPU generates 32-bit virtual addresses. The page size is 4 KB. The processor has a translation look-aside buffer (TLB) which can hold a total of 128-page table entries and is 4-way set associative. The minimum size of the TLB tag is								
	a)	11 bits	b)	13 bits	c)	15 bits	d)	20 bits	
15	-, -: 3.15								
	a)	A page fault has occurred	b)	A page has corrupted data	c)	A page has been modified after being loaded into cache	d)	An illegal access of page	
16	A system uses FIFO policy for page replacement. It has 4-page frames with no pages loaded to begin with. The system first accesses 100 distinct pages in some order and then accesses the same 100 pages but now in the reverse order. How many page faults will occur?								
	a)	196	b)	192	c)	197	d)	195	
17	If a	process is executing in cal section. What is the	its o	critical section, then number indition called?	io ot	her processes can be	exec	uting in their	
	a)	mutual exclusion	b)	critical exclusion	c)	synchronous exclusion	d)	asynchronous exclusion	

18	What is a long-term scheduler?									
	a)	It selects process which have to be brought into the ready queue		It selects processes which have to be executed next and allocates CPU	c)	It selects processes which heave to remove from memory by swapping	· d)	None of the mentioned		
19	A s	ystematic procedu	ocess is known as-							
20	size	is 4 Kbyte and s	ize of e	Deadlock size of virtual addreseach page table entry the maximum number	is 32	2-bit. The main men	norv	is byte addressable		
	otne	er information in e	ach pag	ge table entry?			101 30	oring protection and		
21		2	b)		c)	12	d)	14		
21				to implement a 4-bit						
22		64 bits	b)	128 bits	c)	1 Kbits	d)	2 Kbits		
22	Mat	ch the following								
	 (a) Immediate address mode (b) Direct address mode (c) Indirect address mode (d) Index addressing mode (e) Base address mode (f) Relative address mode 				 (1) Local variables (2) Relocatable programs (3) Pointer (4) Locality of reference (5) Arrays (6) Constant Operands 					
	a)	a6 b1 c3 d5 e2 f4	b)	a5 b4 c6 d3 e1 f2	c)	a3 b5 c2 d4 e1 f2	d)	a6 b5 c2 d3 e1 f4		
23	Register renaming is done in pipelined processors									
		as an alternative to register allocation at compile time	,	for efficient access to function parameters and local variables	c)	to handle certain kinds of hazards	d)	as part of address translation		
24	Memory interleaving is done to									
	1	Increase the amount of logical memory	b)	Reduce memory access time	c)	Simplify memory interfacing	d)	Reduce page faults		
25	In an instruction execution pipeline, the earliest that the data TLB (Translation Lookaside Buffer) can be accessed is									
	a) l	pe accessed is perfore effective address calculation has started	b) n	during effective address calculation	c)	after effective address calculation has completed	d)	after data cache lookup has completed		

26	The correct matching for the following pairs is								
	(A) DMA I/O	*		(1) Hi	gh s	peed RAM			
	(B) Cache			(2) Di	sk				
	(C) Interrupt I/	0		(3) Pr	inte	er			
	(D) Condition Co	de Re	gister	(4) AL	J				
	a) A4B3C1D2	b)	A2B1C3D4	3 -5	c)	A4B3C2D1	d)	A2B3C4D1	
27	The technique whereby called	the D	MA controlle	er steals t	ne ac	cess cycles of the pr	ocess	sor to operate is	
	a) Fast Conning	b)	Memory Co	on	c)	Cycle Stealing	d)	Memory Stealing	
28	For the daisy chain sche	eme of	connecting	I/O devic	es, w	hich of the following	g stat	tement is true?	
	a) It gives non- uniform priority to various devices		It is only us connecting devices to a processor	slow a		It requires a separate interrupt pin on the processor for each device	d)	It gives uniform priority to all devices	
29	A machine with N diffe								
	a) 2^N	b)	N^N		c)	N ²	,	N	
30	A cache has a 64 KB ca containing the cache us a) 64	es 32 - b)	bit addresses	s. How m	any l	lines (blocks) and set 256	ts do	es the cache have? 32	
31	Which of the following	is the	property of	transacti	on th	at protects data fron	1 sys	tem failure?	
	a) Atomicity	b)	Isolation		c)	Durability	d)	Consistency	
32	Which normalization form is based on the transitive dependency?								
	a) 1NF	b)	2NF		c)	3NF	d)	BCNF	
33	Which of the following database?			used for					
	a) Drop		Delete	**		Rollback	d)	Remove	
34	Which of the following						•		
	a) Primary key	b)	Candidate	key	c)	Foreign key	d)	None	
35 Given the following relation instance.							•		
r	x y z 1 4 2 1 5 3 1 6 3 3 2 2 Which of the following a) XY -> Z and Z -> Y					tisfied by the instand YZ -> X and X - > Z	ce? d)	XZ -> Y and Y -> X	
26									

Consider the following relational schema:

Suppliers(sid:integer, sname:string, city:string, street:string)

Parts(pid:integer, pname:string, color:string)

Catalog(sid:integer, pid:integer, cost:real)

Consider the following relational query on the above database:

SELECT S.sname

FROM Suppliers S

WHERE S.sid NOT IN (SELECT C.sid

FROM Catalog C

WHERE C.pid NOT IN (SELECT P.pid

FROM Parts P

WHERE P.color<> 'blue'))

Assume that relations corresponding to the above schema are not empty. Which one of the following is the correct interpretation of the above query

- a) Find the names of Find the names of Find the names of Find the names of all suppliers who all suppliers who all suppliers who all suppliers who have not supplied only blue parts. have supplied a have not supplied a have supplied non-blue part. non-blue part. only blue parts.
- An entity in A is associated with at most one entity in B. An entity in B, however, can be associated with any number (zero or more) of entities in A.
 - a) One-to-many
- b) One-to-one
- c) Many-to-many
- d) Many-to-one
- 38 Which commands are used to control access over objects in relational database?
 - a) CASCADE & MVD
- b) GRANT & REVOKE
- c) QUE & QUIST
- d) None of these
- 39 Consider the ORACLE relationships below:One $(x, y) = \{<2, 5>, <1, 6>, <1, 6>, <1, 6>, <4, 8>, <4, 8>\}$ Two $(x, y) = \{<2, 55>, <1, 1>, <4, 4>, <1, 6>, <4, 8>, <4, 8>, <9, 9>, <1, 6>\}. Consider the following SQL queries, SQ1 and SQ2, respectively:$

SQ1: SELECT * FROM One)

EXCEPT

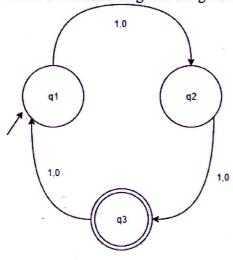
(SELECT * FROM Two);

SQ2: SELECT * FROM One)

EXCEPT ALL

(SELECT * FROM Two);

What is the cardinality of the result generated on the execution of each SQL query on the instances above?


- a) 2 and 1, respectively
- b) 1 and 2, respectively
- c) 2 and 2, respectively
- d) 1 and 1, respectively

40 Which of the following is **TRUE**?

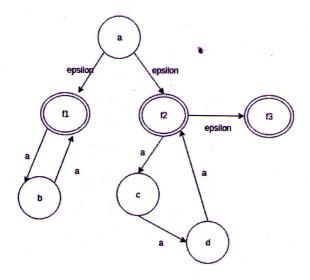
- a) Every relation in 3NF is also in BCNF
- b) A relation R is in 3NF if every non-prime attribute of R is fully functionally dependent on every key of R
- c) Every relation in BCNF is also in 3NF
- d) No relation can be in both BCNF and 3NF

- 41 A Language for which no DFA exist is a____
 - a) Regular Language
- b) Non-Regular Language
- c) May be Regular
- d) Cannot be said

42 Which of the following will the given DFA won't accept?

a) ε

- b) 11010
- c) 10001010
- d) String of letter count 11
- 43 Regular expression for all strings starts with ab and ends with bba is.
 - a) aba*b*bba
- b) ab(ab)*bba
- c) ab(a+b)*bba
- d) All of the mentioned


44 Which of the following options is correct?

Statement 1: Initial State of NFA is Initial State of DFA.

Statement 2: The final state of DFA will be every combination of final state of NFA.

- a) Statement 1 is true and Statement 2 is true
- b) Statement 1 is true and Statement 2 is false
- c) Statement 1 can be true and Statement 2 is
- d) Statement 1 is

 * false and
 Statement 2 is
 also false
- 45 The number of elements present in the e-closure(f2) in the given diagram:

a) 0

b)

c) 2

d) 3

The language accepted by Push down Automaton:

a) Recursive Language

b) Context free language

c) Linearly Bounded d) All of the language

mentioned

Given grammar G:

(1)S->AS

(2)S->AAS

(3)A->SA

(4)A->aa

Which of the following productions denies the format of Chomsky Normal Form?

b) 1,3

c) 1, 2, 3, 4

d) 2, 3, 4

Which of the problems are unsolvable?

a) Halting problem

b) Boolean Satisfiability problem

Halting problem & Boolean Satisfiability problem

d) None of the mentioned

Given Grammar: S->A, A->aA, A->e, B->bA

Which among the following productions are Useless productions?

a) S->A

b) A->aA

c) A->e

d) B->bA

50 The production of the form A->B, where A and B are non-terminals is called

a) Null production

b) Unit production

c) Greibach Normal **Form**

d) Chomsky Normal **Form**