01000PH100092005

Reg No.:

Max. Marks: 100

Name:

Page

HURU

Duration: 3 Hours

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S1 (S,FE) S2 (S) Examination February 2023 (2015 Scheme)

Course Code: PH 100

Course Name: ENGINEERING PHYSICS

	PART A	Marks
1	Write any two practical applications of damping.	(2)
2	Define frequency and wavelength of wave motion.	(2)
3	Write a note on interference filter.	(2)
4	Compare the phenomena of interference and diffraction.	(2)
5	Distinguish between positive and negative crystals with respect to polarisation.	(2)
6	Write a note on BCS theory.	(2)
7	Obtain the expressions for energy and momentum operator.	(2)
8	Derive the expression for volume of a unit cell in phase space.	(2)
9	Distinguish between musical sound and noise.	(2)
10	What is SONAR? Give one application.	(2)
11	What is pumping in Laser system? Mention two methods of pumping.	(2)
12	Write a short note on working of LED	(2)
3	PART B	
	Answer any 10 questions. Each question carries 4 Marks	
13	With necessary graph, explain the concept of sharpness of resonance.	(4)
14	A wave is represented by the equation $y = 2.2 \cos (300 t - 0.24 x)$, where x and y	(4)
*	are in m and t is in sec. Find its amplitude, frequency, wave length and wave	
	velocity.	
15	A parallel beam of light of wavelength 5890 A ⁰ , is incident on a glass plate of	(4)
	refractive index 1.5 such that the angle of refraction into the plate is 60 $^{\circ}$	
	Calculate the smallest thickness of the plate which will make it appear dark by	
	reflection.	
16	A parallel beam of monochromatic light is allowed to be incident on a plane	; (4)
	transmission grating having 5000 lines/cm and second order spectral line is found	L
	to be diffracted through 30 0 . Calculate the wavelength of light used.	

01000PH100092005

17	List any 4 uses of polaroids.	(4)
18	What is Meissner effect? Show that super conductors behave like perfect	(4)
	diamagnets.	
19	State Heisenberg's Uncertainty Principle and hence explain the natural line	(4)
	broadening of spectral lines.	
20	Write any four postulates of Fermi- Dirac statistics	(4)
21 22	The volume of a hall is 1500 m^3 . It has a total absorption of 160 m^2 sabine. If the hall is filled with audience who add another 40 m^2 sabine, then find the difference in reverberation time. A guartz crystal of thickness 0.001 m is vibrating at resonance. Calculate the	(4)
	fundamental frequency. (Young's modulus for quartz = $7.9 \times 10^{10} \text{ Nm}^{-2}$ and o	(9
	density of quartz = 2.650 x 10^3 kg/m ³)	
23	What is holography? Explain recording of hologram.	(4)
24	Calculate the refractive index of cladding material of an optical fibre whose	(4)
	numerical aperture is 0.22 and refractive index of core is 1.42.	~ /
	PART C	
	Answer any three questions. Each question carries 6 Marks	
25	Derive the differential equation for forced harmonic oscillator and obtain the	(6)
	solution.	
26	Explain the theory of grating and derive grating equation	(6)
27	Describe the production of elliptically polarised light. How will you detect the	(6)
	state of polarisation of a given beam of light?	
28	Obtain the expression for energy eigen value and wave function of a particle	(6)
	trapped in one dimensional potential well.	
	PART D	
	Answer any three questions. Each question carries 6 Marks	
29	Describe any six acoustic factors of a hall and its remedies.	(6)
30	With the help of a neat diagram explain the construction and working of magnetostriction oscillator	(6)
31	Explain the construction and working of Helium Neon laser	(6)
32	With the help of block diagram explain the working of ontical fibre	(0) (6)
1	communication system. Mention two advantages of optical fibre communication	
	system.	
	•	

3

-

Page 2 of 2
