0800RAT205122103

Reg No.:	Name:	cha
	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY 💆	1295V
Third Seme	ster B.Tech Degree Regular and Supplementary Examination December 2022 (201	9 Schei
	CHERUX	Bree.
		1040
	Course Code: RAT205	
	Course Name: DIGITAL ELECTRONICS	
Max. M	Marks: 100 Duration: 3	3 Hours
		Mada
	Answer all questions. Each question carries 3 marks	Marks
1	Convert the hexadecimal number (A3.EF) ₁₆ into binary and octal.	(3)
2	Draw the circuit diagram of a CMOS NAND Gate.	(3)
3	Prove that A'B'C' + A'BC' + AB'C' + ABC' = C' using Boolean Algebra.	(3)
4	Explain the working of a half adder with truth table and circuit diagram.	(3)
5	Derive the characteristic equation of a T flipflop.	(3)
6	Distinguish between asynchronous and synchronous counters.	(3)
7	Explain the terms resolution and accuracy of an A/D Converter.	(3)
8	Compute the minimum number of flipflops required to design a mod 12 ring	(3)
	counter and a mod 12 binary counter.	
9	Distinguish between SRAM and DRAM.	(3)
10	Write the Verilog Code for a D Flipflop.	(3)
	PART B	
	Answer any one full question from each module. Each question carries 14 marks	7
	. Module 1	
11	(a) Perform unsigned binary subtraction (1000) ₂ - (1010) ₂ using 1's complement	(7)
	and 2's complement method.	
	(b) Explain the working of a typical TTL NAND gate with necessary table and	(7)
	circuit diagram.	
12	(a) Which are the universal gates? Realise basic gates using universal gates.	(7)
, .	(b) Convert the following:	(7)

(i) $(1001011)_{gray} = ($)₂ (ii) $(630.4)_8 = ($)₁₀ (iii) $(153.6875)_{10} = ($)₈

 $(iv) (76)_{10} = ()_{gray}$

0800RAT205122103

Module 2

13 (a) Simplify the Boolean expression $F(A,B,C,D) = \sum m(1, 3, 5, 7)$ using K map (b) Describe the working of a 4:1 multiplexer with necessary equation, truth tab and logic diagram. 14 (a) Obtain the minimal product of sums expression for the function (7) $F(A,B,C,D) = \Pi(4, 5, 6, 8, 9, 12, 13, 14)$ with don't cares (0, 1)(b) Explain the working of a four-bit carry look ahead adder with necessary (7)equations and diagram. Module 3 (7)(a) Explain with diagram the working of a master slave JK Flipflop. (b) Convert a T Flipflop into a JK Flipflop. (7)16 (a) Design a mod 6 asynchronous up counter with circuit and timing diagram. (7)(b) Describe with diagram the working of a 4-bit parallel in serial out (PISO) Shift (7)Register. Module 4 (a) Explain the working of a 4-bit Johnson Counter with circuit and timing (7)diagram. (b) Describe with diagram the operation of a Weighted Resistor DAC. (7)18 (a) Design a 3-bit synchronous binary up counter using T flip flop. (7) (b) Explain with diagram the working of a Successive Approximation Type A/D (7)Converter. Module 5 (a) Explain the read and write operations of a basic DRAM cell with necessary (7)19 diagrams. (b) Write the Verilog code for a full adder. (7)20 (a) Describe with diagram the working of a PROM. (7)(b) Explain the difference between PLA and PAL with necessary diagrams. (7)