1100RAT307122201

Reg No.:____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree Regular and Supplementary Examination December 2022 (2019 Schem

Course Code: RAT 307

Course Name: CONTROL SYSTEMS

(Provide normal graph sheets and semi-log graph sheets)

Max. Marks: 100

PART A

Duration: 3 Hours

		(Answer all questions; each question carries 3 marks)	Marks
1	4	Draw the Block Diagram of an open loop and closed loop control system	3
2		Can Mason's gain formula be used to develop the transfer function of the system?	3
		Justify	
3		The closed loop transfer function of a second order system is given by 20	3
		$S^2 + 10S + 20$ Determine the damping ratio and the natural frequency of oscillations.	
4		The characteristic equation of two systems is given below, Identify the stable	3
		system	
		$G1(s) = s^3 + 2s^2 + 3s + 1$	
		$G2(s) = s^3 + 2s^2 + s + 3$	
5		Explain the effect of adding a pole to the open loop transfer function of a system.	3
6		Define gain cross over frequency and phase cross over frequency of a system.	3
7		Give the block diagram of the linear continuous time control system represented in state space	3
8		Define the following a. state variable b. state space c. state vector	3
9		Explain the characteristics of nonlinear systems.	3
10		Explain Describing function analysis of non linear systems	3
		PART B	
		(Answer one full question from each module, each question carries 14 marks)	
		Module -1	
11	a)	Derive the transfer functions of an armature-controlled DC motor.	8
	b)	Differentiate between Force voltage and Force current analogy.	6

OR

Page 1 of 3

12 Obtain

.

Module -2

13 Find response of the unity feedback system with open loop transfer function mentioned below for Unit step Input and comment on its stability based on the location of poles

$$G(s) = \frac{1}{(S^2 + s)}$$

OR

14

Conduct the steady state error Analysis for the following reference input to a closed 14 loop system

i) Unit Step

ii) Unit Ramp

iii) Unit Parabolic

And also obtain static error coefficients for each input for Type 0,1,2 systems

Module -3

15 Plot the root locus of the unity negative feedback system with forward path transfer 14

function
$$\frac{\pi}{(s+4)(s-1)}$$
.

OR

16 Sketch Bode plot for the following transfer function $G(s) = \frac{(s+3)}{s(s+1)(s+2)}$ and find the 14 phase margin and gain margin

Module -4

- 17 a) Explain Controllability and Observability
 - b) Find the state space model for the system having transfer function. $\frac{C(s)}{R(s)} = \frac{1}{s^2 + s + 1}$ 6

Page 2 of 3

14

8

1100RAT307122201

18 a)	Find the solution of homogeneous equation for the following state equation	8
	$\dot{x} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} x$, when $x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	
b)	Derive the transfer function from the state model	6
	Module -5	
19	With the help of suitable diagram explain the common physical non linearities	14
	OR	
20	Derive the describing function of an ideal relay non linearity	14
