06000EC363122005 Name: Reg No .: APJ ABDUL KALAM TECHNOLOGICAL UNIVERSIT Fifth Semester B.Tech Degree (S,FE) Examination January 2023 (2015 **Course Code: EC363 Course Name: OPTIMIZATION TECHNIQUES Duration: 3 Hours** Max. Marks: 100 PART A Marks Answer any two full questions, each carries 15 marks. 1 a) Find the maxima, minima and saddle points, if any, of $f(x) = x_1^3 + x_2^3 - 3x_1 - 3x_1 + x_2^3 - 3x_1$ (5) $12x_2 + 25$ b) Maximize $f(x_1, x_2, x_3) = -x_1^2 - x_2^2 - x_3^2 + 4x_1 + 6x_2$ (10)Subject to $x_1 + x_2 \le 2$ $2x_1 + 3x_2 \le 12$ $x_1, x_2, x_3 \ge 0$ using Kuhn-Tucker conditions 2 a) Using penalty method (Big M-method) solve the following LPP (10)Minimize Z=5x + 3ysubject to $2x + 4y \le 12$ 2x + 2y = 10 $5x + 2y \ge 10$ and $x, y \ge 0$ (5) b) Write down the Simplex algorithm to solve a Linear Programming Problem 3 a) Solve the following LPP graphically (7) Minimize Z=200x + 500ysubject to the constraints $x + 2y \ge 10$ $3x + 4y \le 24$

and
$$x \ge 0, y \ge 0$$

b) Using method of Lagrange multipliers, Minimize $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + (8x_3^2)$ subject to constraints $4x_1 + x_2^2 + 2x_3 = 14$

06000EC363122005

PART B Answer any two full questions, each carries 15 marks.

4 a) Determine the optimum basic feasible solution to the following transportation (8) problem using MODI method.

	A	В	C	Supply
I	50	30	220	1
II	90	45	170	3
III	250	200	50	4
Demand	4	2	2	

Obtain the initial feasible solution to the following transportation problem using
 (7)

 North West Corner method.

	D_1	D_2	D_3	D_4	Availabilities
O_1	3	1	7	4	300
02	2	6	5	9	400
03	8	3	3	2	500
Demand	250	350	400	200	

5 a) Solve the following game graphically

(8)

Player B

Player
$$A$$

$$\begin{bmatrix}
1 & -3 \\
3 & 5 \\
-1 & 6 \\
4 & 1 \\
2 & 2 \\
-5 & 0
\end{bmatrix}$$

- b) In a game of matching coins with two players, suppose A wins one unit of value (7) when there are two heads, wins nothing when there are two tails and loses ½ unit of value when there are one head and one tail. Determine the payoff matrix, the best strategies for each player and the value of the game to A
- 6 a) Using Dijkstra's method find the shortest path from node 0 to node 7 from the (7) following network path model

b) Find an IBFS to the following transportation problem by LC method

(8)

	D_1	D_2	D_3	D_4	D_5	Supply
O_1	73	40	9	79	20	8
02	62	93	96	8	13	7
03	96	65	80	50	65	9
04	57	58.	29	12	87	3
05	56	23	87	18	12	5
Demand	6	8	10	4-	4	

PART C
Answer any two full questions, each carries 20 marks.

- 7 a) Use Fibonacci search method to find the minimum of the function f(x) = 0.65 (10) $\frac{0.75}{(1+x^2)} 0.65x \tan^{-1}(x)$
 - b) Minimize $f(x) = 2x^2 + y^2$ in two iterations from the point (1,2) using steepest (10) descent method (3 iterations only)

06000EC363122005

- 8 a) Using Newton-Raphson method minimize the function $f(x) = -6x^6 4x^5 (10)$ $100x^2 + 3000$ starting with $x_1 = 1$, $\epsilon = 0.01$
 - b) Explain genetic algorithm. (10)
- 9 a) Define the following terms (10)
 - i.) Fitness function ii) Mutation iii) Reproduction
 - b) Using Hooke-Jeeves method Minimize $f(x_1, x_2) = x_1^2 + 3x_2^2 + 6x_1x_2 x_1 (10)$ x_2 by taking $\Delta x = \Delta y = 0.5$ and starting from the point (2,-1)(perform two iteration)
