Reg No.:__

Name:

áge

 \bigcirc

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree Regular and Supplementary Examination December 2022 (20)

Course Code: AMT 305 Course Name: INTRODUCTION TO MACHINE LEARNING

Ma	x. M	arks: 100 Duration: 3	Hours
		PART A	
		(Answer all questions; each question carries 3 marks)	Marks
1		Distinguish between classification and regression.	3
2		What is meant by k-fold cross validation. Given a dataset with 1600 instances,	3
		how the k-fold validation is done with $k = 10$.	
3		Actual Predicted	3
		4 5	
		3 4	
		15 19	
		7 10	
		9 12	
		20 21	
		Use the above dataset to calculate, mean square error, mean absolute error and	
		root mean square error	
4		Write a short note on logistic regression.	3
5		Draw the activation function ReLu. What are the advantages of using ReLu over	3
		a sigmoid function.	
6		Distinguish between bootstrapping and cross validation.	3
7		What is a meant by maximum margin hyperplane?	3
8		What are the disadvantages of using SVM.	3
9		Explain any three different ways to measure the distance similarity while using	3
		k-means clustering algorithm.	
10		Compare partitioning clustering and hierarchical clustering.	3
		PART B	
~		(Answer one full question from each module, each question carries 14 marks)	
		Module -1	
11	a)	Classify the different types of machine learning.	8
	b)	Summarize the various applications of machine learning.	6
			•
		Page 1 of 5	

С

- 12 a) Write a short note on hypothesis space, version space, most specific and most 6 general hypothesis.
 - b) Define VC dimension? Show that an axis aligned rectangle can shatter 4 points in 8 2 dimensions.

Module -2

13 a) The below dataset contains features such as Colour, Type and Origin of cars and 7 the class whether it is stolen, not stolen.

Example No	Colour	Туре	Origin	Whether Stolen
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes
4	Yellow	Sports	Domestic	No
5	Yellow	Sports	Imported	Yes
6	Yellow	SUV	Imported	No
7	Yellow	SUV	Imported	Yes
- 8	Yellow	SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	Sports	Imported	Yes

Use Naïve Bayes algorithm to determine whether a red domestic SUV car is stolen or not.

b) Use the following data to construct a linear regression model for an auto 7 insurance premium as a function of driving experience.

Driving experience (in years)	5	2	12	9	15	6	25	16
Monthly auto insurance premium (\$)	• 64	87	50	71	44	56	42	• 60

1

- 14 a) Explain the procedure to reduce the dimensionality of a dataset using principal 6 component analysis.
 - b) Given the following data on a certain set of patients seen by a doctor, can the 8 doctor conclude that the person having chills, fever, mild headache and without running nose has a flu?

Chills	Running Nose	Headache	Fever	Has Flu
Y	N *	Mild	Y	N
Y	Y	No	N	Y
Y	Ν	Strong	Y	Y
N	Y	Mild	Y	Y
Ν	Ν	No	N	Ν
Ν	Y	Strong	Y	Y
N	Y	Strong	N	N
Υ	Y	Mild	Y	Y

Construct a decision tree using ID3 algorithm and predict the class for the above case.

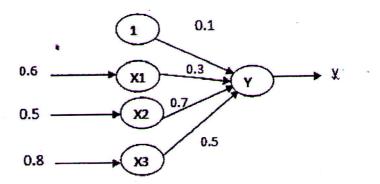
Module -3

15 a) Consider a two-class classification problem of predicting whether a photograph
 8 contains a man or a woman. Suppose we have a test dataset of 10 records with
 expected outcomes and set of predictions from our classification algorithm.

	Expected	Predicted
1	Man	Woman
-2	Man	Man
3	Woman	Woman
4	Man	Man
5	Woman	Man
6	Woman	Woman
7	Woman	Woman
8	Man	Man
9	🥣 Man	Woman
10	Woman	Woman

Compute the confusion matrix for the data. Also, compute the accuracy, precision, recall, specificity and f-score.

6


b) Compute the output of the following neuron if the activation function is,

i) ReLu

â

ii) Sigmoid

iii) Tanh.

16 a) Given the following data, construct the ROC curve of the data. Compute the 8 AUC.

Threshold	TP	TN	FP	FN
1	0	25	0	29
2	7	25	0	22
3	18	24	1	11
4	26	20	5	3
5	29	11	14	0
6	29	0	25	0
7	29	0	25	0

b) Draw a multilayer feed forward network. Explain how learning happens in the 6 training phase of a neural network.

Module -4

- 17 a) Given a set of positively labelled data points { (6,2), (6,-2), (12,2), (12,-2) } and 8 negatively labelled data points { (2,0), (0,2), (0,-2), (-2,0) }. Identify the maximum margin hyperplane. Also, sketch the maximum margin hyper plane using a graph.
 - b) Explain kernel trick in the context of support vector machine. List any two 6 Kernel function used in SVM.
- 18 a) How to estimating the parameters of a probability distribution using the general 6 MLE method for
 - b) State the mathematical formulation to express Soft Margin as a constraint 8 optimization problem.

Module -5

19 a) By using k-means clustering algorithm divide the below data points into three
8 groups by using the Euclidean distance. Assume the initial centroids are (1,2),
(8,9) and (18,18).

X	16	2	1	17	18	9	3	8	2	19	3	7
Y	17	2	2	• 19	18	10	3	9	3	17	2	9
Evolo	in ont	two	ancar	nhlam	athod	C UCOC	forl	arnin	a			1

b) Explain any two ensemble methods used for learning.

	Α	В	C	D	E
Α	0	9	3	6	11
В	9	0	7	5	10
С	3	7	0	9	2
D	6	5	9	0	8
Е	11	10	2	8	0

b) Illustrate any one density-based clustering algorithm.

6

ICA