Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B. Tech Degree Regular and Supplementary Examination December 2022 (2019 Scheme)

Course Code: EET 303

Course Name: MICROPROCESSORS AND MICROCONTROLLERS

Max. Marks: 100		Duration: 3 Hours	
	PART A (Answer all questions; each question carries 3 marks)	Marks	
1	Describe multiplexing and demultiplexing process in 8085 μP	3	
2	Write any thee addressing modes of 8085 μP with examples.	3	
3	Write an 8085 ALP to find 2 ^s complement of an 8-bit number which is stored in	3	
	location 2050H.		
4	What is stack? How stack is initialised?	3	
5	Distinguish between vectored and non-vectored interrupts	3	
6	Write the differences between microprocessor and microcontroller.	3	
7	Explain the indexed addressing modes of 8051 μ C with two examples	3	
8	Differentiate between CLR C and CPL C instruction of 8051 μ C	3	
9	Explain SCON register in 8051 µC	3	
10	Indicate which mode and which timers are selected for each of the following.	3	
	(a) MOV TMOD, #01H		

(b) MOV TMOD, #20H

PART B

(Answer one full question from each module, each question carries 14 marks) Module -1

- 11 a) Point out the importance of the following functional blocks of 8085Mp 8 architecture
 - (i) Flag flip flops
 - (ii) Instruction decoder and machine cycle encoding
 - (iii) Stack pointer
 - (iv) Program counter
 - b) Explain the basic steps involved in reading from and writing to memory locations 6

4

1100EET303122103

	1				
12	a)	Draw and explain the timing diagram of OUT 00H instruction of 8085Mp	8		
	b)	Discuss instruction cycle, machine cycle and T state of 8085	6		
		Module -2			
13	a)	Two 16-bit numbers are stored in memory location 8000H onwards. Write an	7		
		8085 ALP to interchange the 16-bit numbers stored in the memory.			
	b)	Design a delay subroutine in 8085 μ P to obtain a delay of 0.1s. Assume time for	7		
		1 T-state as 320ns			
14	a)	List the sequence of operations involved during the execution of PUSH PSW and	8		
		POP PSW instructions of 8085 Mp			
· *.	b)	Write an 8085 ALP to save the content of accumulator and flag register to BC	6		
		register pair after adding 25H and 65H.			
Module -3					
15	a)	Explain all modes of operation of 8255 PPI	8		
	b)	Identify the number to be loaded in to accumulator to reset 6 th bit of port C of	6		
		8255PPI. Also write the ALP for the same			
16	a)	List out the applications and challenges in Embedded Systems.	6		
	b)	Draw and explain memory organisation in 8051 μ C	8		
Module -4					
17	a)	Write an 8051 ALP to multiply A1H and B1H and store the LSB and MSB	8		
		results in R_0 and R_1 registers of bank 2.			
	b)	Explain the operation of following instructions of 8051 μ C	6		
•		(a) DA A (b) SUBB A, $@R_0$ (c) ANL A, #10H			
18	a)	Explain I/O ports and its functions in 8051 μ C	6		
	b)	Write an 8051 C program to get a byte of data from P0. If it is less than 100, send	8		
×		it to P1; otherwise, send it to P2.	i.		
		Module -5			
19	a)	Illustrates different modes of operation of timers in 8051 μ C	8		
	b)	Write an 8051 ALP to generate a rectangular wave of 1KHz having a duty cycle	6		
		of 40% from TxD pin of 8051, using timer 1. Assume XTAL of 12 MHz			
20	a) .	Draw and explain interfacing of DAC with 8051 μ C	6		
	b)	i). List the interrupts in 8051	8		
		ii). Write the steps in execution of an interrupt in 8051			

â