0800ECT203122101

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B. Tech Degree Regular and Supplementary Examination December 20

Course Code: ECT203

Course Name: LOGIC CIRCUIT DESIGN

Max. Marks: 100

Duration: 3 Hours

Marks

PART A

Answer all questions. Each question carries 3 marks

1	Convert the decimal number 215 to following codes (i)BCD code (ii)Excess 3 code (iii) Gray code	(3)
2	Convert the decimal number 18.6875 into binary and hexadecimal.	(3)
3	Write Verilog Code for a XOR gate	(3)
4	Express $f(A,B,C) = AB + AC' + BC$ in standard SOP form.	(3)
5	Design a 1-bit comparator circuit using logic gates.	(3)
6	Realize an 8:1 multiplexer using 4:1 multiplexers and gates.	(3)
7	Convert a JK flip-flop to D flip-flop.	(3)
8	Realize D latch using gates and write the Verilog code.	(3)
9	Define the following in terms of Logical families i) Propagation delay ii) fan out iii) Noise margin	(3)
10	Draw the circuit diagram of a CMOS- NOT gate and explain the working with truth table.	(3)

PART B

Answer any one full question from each module. Each question carries 14 marks

Module 1

11

a) Find the sum of two hexadecimal numbers (85C) 16 and (23C6) 16 (2)
b) Covert each decimal number to binary and perform the subtraction 21.510 --13.2510 using (i)1's complement method(ii)2's complement (4) method

- c) Explain the main differences between the Verilog terms
 (i)Wire and Reg
 - (ii)Task and Function

(8)

0800ECT203122101

	12	a)	How is the Hamming code word generated? The message "1001001" is coded in 7-bit even parity Hamming code, which is transmitted through	(8)			
×.,	- 148 B		a noisy channel. Decode the message, assuming that at most a single				
			error occurred in each code word.				
		b	Explain Verilog operators with examples.	(6)			
	10	`		$\langle 0 \rangle$			
	13	a)		(8)			
			11) + d (3, 7, 14, 15) using K-Map and implement the simplified				
		L)	expression using universal gates.				
		D)	Prove the following Boolean rules $\dot{A} + A B = A$	(6)			
			i. $A+AB=A$ ii. $A+A'B=A+B$	(6)			
	14		Reduce the following function using Karnaugh map technique	(9)			
	14	a)		(8)			
			f (A, B, C, D) = πM (0, 2, 4, 10, 11, 14, 15) and implement the				
			simplified expression using NAND gates.	(6)			
		b)	Explain the significance of duality principle in Boolean algebra	(0)			
			Module 3				
	15	a)	Implement the following functions using MUX	(9)			
			(i)AND				
			(ii)XOR	(5)			
		1.)	iii) $f(A, B, C) = \sum m (0, 3, 5, 6)$				
	16		Write a verilog code to implement 4:1 multiplexer.	(0)			
	16	a)	Implement a Full adder circuit using (i) 3: 8 decoder (ii) 1:8 demultiplexer	(9)			
		b)	Write a Verilog description for a one-bit full adder circuit	(5)			
		-)	Module 4				
	17	a)	Design a 3-bit synchronous up counter using T flip-flop.	(9)			
		b)	Explain the operation of a 4-bit Ring counter.	(5)			
	18 ¹	a)	Design a divide by 2N circuit using N number of flip-flops. Draw the	(7)			
			truth table and waveforms.				
		b)	What is a race around condition related to JK Flip Flop? Explain how to	(7)			
			eliminate the problem.				
			Module 5				
	19	a)	Describe the working of a 2-bit TTL NAND gate with Totem pole	(8)			
			configuration.				
			Explain the working of a transistor level CMOS NOR gate.	(6)			
	20		Describe the working of a tristate TTL inverter	(8)			
		b)	Explain the working of a transistor level CMOS NAND gate.	(6)			
