Reg No.:

B

1

2

a)

b)

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree (S, FE) Examination January 2023 (2015 Scheme)

Course Code: EC303

Course Name: APPLIED ELECTROMAGNETIC THEORY

Max. Marks: 100

Duration: 3 Hours

Pages: 2

PART A Answer any two full questions, each carries 15 marks. Marks a) Derive the expression of capacitance for coaxial cable. (7)b) In a certain material $\sigma = 0, \mu = \mu_0$ and $\epsilon = 81\epsilon_0$. The magnetic field intensity in (8) this material is $H = 10 \cos(2\pi \times 10^9 t + \beta x) a_z$ A/m. Determine E and β . What is the inadequacy of Amphere's circuital law and how is it solved? (6) In a certain medium with $\epsilon = 4\epsilon_0, \mu = \mu_0$. (9) $\boldsymbol{H} = 12e^{-0.1y}\sin(\pi \times 10^8 t - \beta y) \,\boldsymbol{a_x} \,\mathrm{A/m}$ Find (a) the wave period T, (b) the wavelength λ , (c) the electric field E, (d) the

phase difference between E and H

- 3 State Maxwell's equations in differential form, integral form and point form. Also a) (8) mention the laws from which each of the equation is derived.
 - Current sheets of 20 a_x A/m and -20 a_x A/m are located at y = 1 and y =**b**) (7)-1 respectively. Find **H** in the region -1 < y < 1.

PART B

Answer any two full questions, each carries 15 marks.

- 4 a) Derive the expression of reflection and transmission coefficients when a plane (8) wave propagating in +x direction is incident normally on the boundary x=0between medium 1 (x<0) characterized by $\mu_1, \epsilon_1, \sigma_1$ and medium 2 (x>0) characterized by $\mu_2, \epsilon_2, \sigma_2$.
 - b) A lossless 50 Ω transmission line of length 3.2 m is terminated with an impedance (7)of 30-j50 Ω . If the line operates at a frequency of 400MHz, determine the input impedance.
- 5 a) Derive the expression for characteristic impedance in a transmission line. (7)
 - The plane wave $\vec{E} = 30 \cos(\omega t \beta z) \hat{a}_x$ V/m in air $(\mu = \mu_0, \epsilon = \epsilon_0)$ hits **b**) (8) normally on a lossless medium ($\mu = \mu_0, \epsilon = 4\epsilon_0$) at z = 0. Calculate (i) reflection

06000EC303122001

coefficient, (ii) transmission coefficient, (iii) standing wave ratio (iv) the reflected electric field.

- 6 a) State Poynting Theorem. Derive the expression for total power flowing out of a (9) volume when a plane wave with electric field E and magnetic field H passes through it.
 - b) The propagation constant of a lossy transmission line is $(2 + j5)m^{-1}$ and its (6) characteristic impedance is 50Ω at $\omega = 10^6$ rad/s. What are the values of L, C, R and G?

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) Derive the expression for the radius and the center of resistance circles in a Smith (10)Chart.
 - b) Write short notes on single stub matching. What are the steps to find the stub (10) admittance, stub length and stub position using Smith chart?
- 8 a) Derive expression for TE mode in rectangular wave guide. (10)
 - b) A 100+j150 Ω load is connected to 75 Ω lossless line. Using smith chart find (i) (10) Reflection coefficient (ii) Standing Wave Ratio (iii) The load admittance Y_L (iv) Z_{in} at 0.4 λ from the load (v) The locations of voltage maximum and voltage minimum with respect to the load if the line is 0.6 λ long.
- 9 a) Derive expression for TM mode in rectangular wave guide. (10)
 - b) Consider a TM₁₃ propagating inside a rectangular waveguide having a=3cm, (10)
 b=1.6cm, σ = 0, μ = μ₀, ε = 4ε₀ and H_x = 2sin(πx/a)cos (3πy/b)sin (π × 10¹¹t βz) A/m. Determine (i)The cut-off frequency (ii) The phase constant (iii)
 The propagation constant (iv) The intrinsic impedance.