06000CS301122101

A

Reg No .:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSI

Fifth Semester B.Tech Degree (S, FE) Examination January 2023 (2015 Scheme

Course Code: CS301 Course Name: THEORY OF COMPUTATION

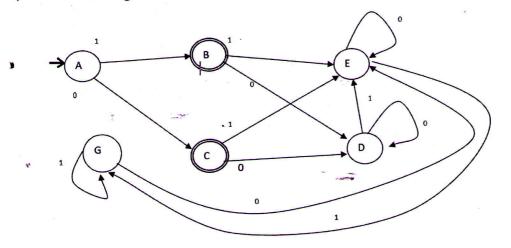
DADT

Max. Marks: 100

Duration: 3 Hours

(5)

(5)


Pagest 2

		PART A Answer all questions, each carries 3 marks.	Marks
1		Construct a DFA accepting strings that contain the substring "aba"	(3)
2	5	What is a ϵ -NFA? Can it accept more languages when compared to DFA?	(3)
3		What is Moore Machine? Explain with an example.	(3)
4		Give the regular expression for identifying string containing both "11" and "000" as	(3)
		substring in a single string. Explain why you feel the regular expression is correct.	

PART B Answer any two full questions, each carries 9 marks.

- 5 a) Design a DFA for the language {w ∈ {a,b}* | where w contains exactly a single "ab" as (5) subtring}.
 - b) Design a DFA for the language $\{w \in \{0,1\}^* | w \text{ contains "01" and "11" as as a substrings}\}$. (4)
- 6 a) Minimize the given DFA.

7

- b) Find an equivalent ϵ -NFA for the following regular expression $ab^*a^*(a+b)$. Follow the (4) steps of regular expression to ϵ -NFA conversion.
- a) State and explain Myhill-Nerode Theorem.
 - b) Explain the difference in transition functions of NFA without ϵ -transition and ϵ -NFA. (4)

06000CS301122101

PART C Answer all questions, each carries 3 marks.

0		Answer un questions, euch curries 5 marks.	
8		What is regular language? How will you show a language is regular?	(3)
9		Explain why regular languages are closed under intersection.	(3)
10		What is the importance of stack in PDA? How is it helpful in identifying strings of the	(3)
		pattern $a^n b^n$?	
11		Explain any one decision problem of CFL.	(3)
•		PART D	
12	a)	Answer any two full questions, each carries 9 marks. What is a derivation tree? Is the grammar $G = \{S \rightarrow AbBa aBC ab, A \rightarrow a aA \epsilon, B \rightarrow b bB \epsilon,$	(6)
		$C \rightarrow a$ ambiguous? Substantiate your answer.	
	b)	Give the CFG for the language $a^n b^n$, where n> 2.	(3)
13	a)	What is pumping lemma for regular languages?	(6)
	b)	Construct a PDA accepting the language a^* by final state.	(3)
14	a)	Construct Determiniatic PDA for the $a^n b b^n$.	(6)
	b)	Give a language that is accepted by NPDA but not by PDA. Substantiate your answer.	(3)
		PART E	
		Answer any four full questions, each carries10 marks.	
15	a)	Explain the application of pumping Lemma for context free language with an example.	(5)
	b)	With an example explain what is Non-Deterministic TMs.	(5)
16	a)	With the help of instantaneous description (ID), explain the working of a simple Turing	(5)
		Machine. Give the specification of the TM and its working with a sample string.	
	b)	Give a Context sensitive grammar to accept the language $L = \{ a^n b^n b^m \}$	(5)
17	a)	Explain the concept of TMs as language acceptors, with an example.	(5)
	b)	Explain the encoding scheme in the case of Universal Turing Machine.	(5)
18	a)	Define formally a Turing machine that accepts an even binary number.	(5)
	"b)	Explain Chomsky's Hierarchy of Languages.	(5)
19	a)	Design a Turing machine to perform addition of two unary odd numbers. The Turing	(6)
		machine should add the numbers only if they are odd.	
	b)	What is a Linear Bounded Automata?	(4)
20	a)	Give a Context sensitive grammar for identifying binary strings containing even number of	(5)
		'0's	
	b)	What is a recursive language? What can you say about union of two recursive languages?	(5)

à