1100RAT301122102

Reg No.:

A

â

Name:

Pages: 3

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree Regular and Supplementary Examination December 2022 (2019 Scheme)

Course Code: RAT 301 Course Name: INTRODUCTION TO ROBOTICS

Max. M	arks: 100 Duration: 3	Hours		
	PART A	Marks		
	(Answer all questions, each question curries 5 marks)	2		
1	Explain briefly DOF and the Grubler-Kutzbach criterion.	3		
2	Describe with a diagram a gripper that can be used to handle large flat objects of	3		
	any type of material.			
3	Determine the fundamental rotation matrix and the homogeneous rotation matrix	3		
	for rotation by π about the f ³ axis.			
4	Obtain the screw transformation matrix for translation by a distance $\lambda = 3$ and	3		
	rotation by an angle $\pi/2$ about the f ² axis.			
5	Compare cartesian space and joint space trajectory planning.	3		
6	Distinguish between Point to Point and Continuous Path planning.	3		
7	Describe the conditions for using linear control schemes for the control of robotic	3		
	manipulators.			
8	Explain how Lagrangian mechanics is applied in dynamic modelling of robots.	3		
9	Differentiate between Proprioceptive and Exteroceptive sensors with suitable	3		
	examples.			
10	What is the minimum number of legs required for static walking? Justify your	3		
44	answer.	•		
PART B				
	(Answer one full question from each module, each question carries 14 marks)			

Module -1

11	a)	Describe SCARA and PUMA robots with neat diagrams.	8
	b)	Classify robots based on motion control and drive technologies.	6
12		Explain the various types of grippers with necessary diagrams	14

1100RAT301122102

Module - 2

7

13 a) Let $F = \{f^1, f^2, f^3\}$ and $M = \{m^1, m^2, m^3\}$ be two initially coincident fixed and mobile orthonormal coordinate frames respectively. Suppose we translate M along f^2 by 3 units and then rotate M about f^3 by π radians. Find $[m^1]^F$ after the composite transformation.

- b) Derive the relation between joint and end effector velocities in terms of the tool 7 configuration Jacobian.
- 14 a) If a frame is rotated by an angle $\pi/4$ about the m¹ axis, and translated by 3 units 6 along m² axis of the mobile frame, obtain the transformation matrix and the coordinates with respect to the fixed frame of a point p = $[2,1,3]^T$ given in terms of the mobile frame.
 - b) Obtain the D-H Parameters of a two-link planar arm given in the figure below. 8 Also, derive its forward kinematic equation.

1

Figure: Two link Planar Arm

Module -3

- a) It is desired to have the third joint of a 5-axis robot go from an initial angle of 15⁰
 to a final angle of 45⁰ in 6 seconds. Plan a cubic polynomial for this requirement with a drawing of the displacement, velocity and acceleration profiles.
 - b) Explain Cartesian Space Trajectory Planning and schemes to plan straight line and 7
 circular trajectories in cartesian space.
- 16 a) What is the disadvantage of straight-line trajectory planning in joint space? 7
 Explain how Linear Trajectory with Parabolic Blends can overcome this disadvantage.

1100RAT301122102

b) Apply the Artificial Potential Field method to obstacle avoidance in mobile robots. 7

Module -4

- 17 a) Obtain the expression for the velocity Jacobian that maps instantaneous joint 7 velocities to instantaneous linear and angular tool velocity.
 - b) Develop the dynamic model of a 2R planar manipulator shown in the figure below. 7

- 18 a) Explain generalised force in robot dynamic modelling.
 - b) Describe PD gravity control with necessary equations and block diagrams.

Module -5

7

7

8

- 19 a) Summarize the characteristics to be considered when choosing a robot for a 8 particular application.
 - b) Determine the degree of mobility, degree of steerability and degree of 6 maneuverability of the differential drive robot shown in the figure below.

- 20 a) How can ultrasonics be applied to active ranging?
 - b) Choose the appropriate characteristics required for a spot welding and arc welding 6 robots.

**>