Reg No .:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree Regular and Supplementary Examination December 2022 (2019 scheme)

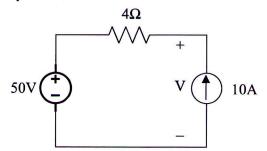
Course Code: EET201

Course Name: CIRCUITS AND NETWORKS

Max. Marks: 100

Duration: 3 Hours

(3)


(3)

ages

PART A

Answer all questions. Each question carries 3 marks Marks

- 1 State and explain Reciprocity theorem using an example.
 - For the circuit given below, find the voltage 'V' across the 10A source, using (3) superposition principle.

- 3 Derive an expression for the current in a series RL circuit connected to a DC (3) source.
- 4 Define time constant of a circuit. A series RC circuit is connected to a DC source (3)
 of 10V at time t = 0. Find the voltage across the capacitor at t = 1s, if the time constant of the circuit is 2 seconds.
- 5 Define transfer function of a network. Derive the transfer function of a series (3) RLC circuit by taking the current through the resistor as the output.

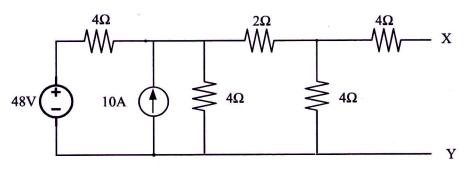
6 Explain the use of dot convention in the analysis of coupled circuits.

- Determine the current through the neutral wire in a three phase 4 wire system, if (3) the phase currents of the load are $I_R = 10\angle -30^0A$, $I_Y = 5\angle -50^0A$ and $I_B = 5\angle 50^0A$.
- 8 A series RLC circuit with $R = 10\Omega$, L = 2H and $C = 40\mu F$ is connected to a (3) variable frequency AC supply. Determine the frequency of the supply, for which the phase angle between the circuit current and supply voltage is zero.
- 9 Define h parameters of a two-port network. Why are they called hybrid (3) parameters?

O Obtain Y parameters of a two-port network whose Z parameters are given by (3) $z_{11} = 4\Omega$, $z_{12} = 2\Omega$, $z_{21} = 3\Omega$ and $z_{22} = 4\Omega$.

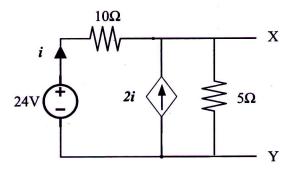
10

7

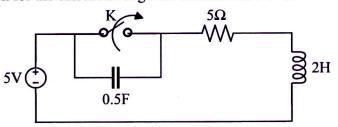

2

PART B

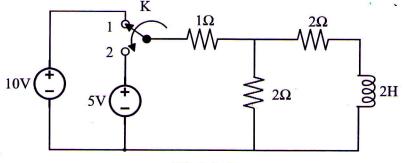
Answer any one full question from each module. Each question carries 14 marks


Module 1

- 11 For the circuit given below,
 - a) Determine the Thevenin's equivalent circuit across the terminals X and Y. (10)
 - b) Determine the value of resistance to be connected across X and Y so that (4) maximum power is transferred to it. Also, calculate the maximum power transferred.


- 12 For the circuit given below,
 - a) Find the Norton's equivalent circuit across the terminals X and Y.
 - b) If a 10Ω resistor is connected across the terminals X and Y, find the power (4) dissipated in it.

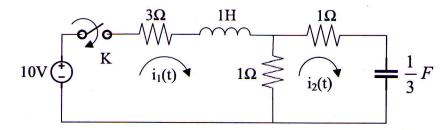
(10)


Module 2

The switch K in the circuit given below has been in the closed position for a long (14) time and steady state condition is reached. At t = 0, the switch is opened. Find the expression for the current through the inductor for t > 0.

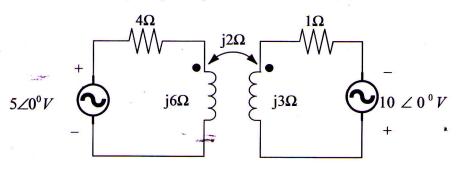
13

The switch K in the circuit given below was initially at position 1 and the circuit (14) has been at steady state condition. At time t = 0, the switch is moved to position 2. Find the expression for the current through the inductor for t > 0.


Module 3

- 15 In the network given below, the inductor and capacitor are initially relaxed. The switch K is closed at time t = 0.
 - a) Model the circuit in s-domain for t > 0
 - b) Using mesh analysis, determine the expression for the current through the (10) inductor for t > 0.

(4)


(8)

(6)

16 For the circuit given below,

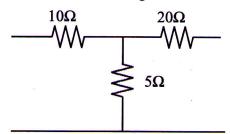
- a) Find the steady state current through the 1Ω and 4Ω resistors.
- b) Obtain the conductively coupled equivalent circuit.

Module 4

17

A 400V, three-phase balanced supply feeds a delta-connected load having phase impedances $Z_{RY} = 40 \angle 30^{\circ} \Omega$, $Z_{YB} = 50 \angle 0^{\circ} \Omega$ and $Z_{BR} = 40 \angle -30^{\circ} \Omega$. Determine the following;

- (i) Phase currents(4)(ii) Line currents(6)
- (iii) Active and reactive power delivered to the load (4)


14

A resistor, a capacitor and an inductor are connected in series with a 230 V, variable frequency AC source. When the supply frequency is varied to 25Hz, the circuit offered a minimum impedance of 50Ω . If the inductance of the circuit is 1*H*, determine the following;

- (i) Resistance and capacitance of the circuit.
- (ii) The voltage across the capacitor.
- (iii) The supply frequencies at which the power dissipated in the resistor is (4) half that of at 25Hz.
- (iv) Q factor at resonance and bandwidth of the circuit.

Module 5

19 a) Determine the h parameters of the following network.

- b) Derive the condition for symmetry and reciprocity of a two-port network in (6) terms of transmission parameters.
- 20 a) Show that Y parameters of two parallel connected two port networks is equal to (6) the sum of their individual Y parameters.
 - b) A two-port network is represented by the following network equations.

$$V_1 = 4I_1 + 2I_2$$

 $V_2 = 2I_1 + 6I_2$

Determine the equivalent π network.

1

(8)

(8)

(4)

(4)

(2)