Reg No.:____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERS

Third Semester B.Tech Degree (S,FE) Examination December 2022 (20)

Course Code: EC207

Course Name: LOGIC CIRCUIT DESIGN

Max. Marks: 100

Duration: 3 Hours

PART A

	Answer any two full questions, each carries 15 marks.							
1	a) Convert (45.75) ₁₀ to Binary, Hexadecimal form and Octal form.							
	b) Obtain the minimal sum of product of the following expression ABCD+AB'C'D'+AB'C+AB							
2	a)	Perform the following operations						
		 (i) (56)₁₀ - (48)₁₀ using 2's and 1's complement method (ii) Represent (478)₁₀ in BCD and Excess-3 codes. 						
	b)	Design the circuit of a 3-line to 8-line decoder using basic gates (7)						
3	a)	What is Hamming code? Determine the Hamming code for the information 1001, with (7)						
		even parity.						
	b)	Design a magnitude comparator to compare two 2-bit numbers A = A1A0 and B = B1B0	(8)					
PART B								
	Answer any two juit questions, each carries 15 marks.							

- 4 a) Define the terms noise margin, propagation delay and power dissipation of logic families. (7)
 Compare TTL and CMOS logic families showing the values of above-mentioned terms.
 - b) Realize the following: i) T flip-flop using SR flip-flop ii) JK flip-flop using D flip-flop. (8)
- 5 a) Draw the circuit diagram of a transistor level CMOS NAND gate and explain the working (7) with a truth table.
 - b) Explain the working of a master slave JK flipflop, with the help of circuit diagram. (8)
- 6 a) Implement the following functions using PLA.

$$F_1 = \sum_m (3,5,7)$$
$$F_2 = \sum_m (4,5,7)$$

b) Explain a MOD 6 asynchronous counter using J K Flip Flop.

(7)

(8)

Page 1 of 2

08000EC207122001

PART C

Answer any two full questions, each carries20 marks.

- 7 a) Draw the logic diagram of a four-bit, bi-directional serial in serial out (SISO) shift register (10) with mode control and explain the working with timing diagram.
 - b) Draw the state diagram for Moore and Mealy serial binary adder. (10)
- 8 a) Draw the logic diagram of a four-bit Johnson counter and explain the working with truth (10) table and timing diagram.
 - b) Reduce the following state table using implication chart technique.

1

1.1

(10)

Present State		Next State, z		
	X=0	X=1		
A	A,0	<i>B,0</i>		
В	D,0	<i>C</i> ,1		
С	F,0	E,0 ·		
D	D,0	F,0		
E	B,0	G,0		
F	G,0	C,1		
G	A,0	F,0		

9 a) Draw the state diagram, transition table, D flip flop excitation table and state equation (10) for the given state table.

Present state	Next state		Output (Z)	
.0	X=0	X=1	X=0	X=1
A(00)	А	В	0	0
B(01)	С	В	0	0
C(10)	А	D	0	0
D(11)	С	В	1	0

b) Draw the logic diagram of a 4-bit ring counter and explain the working with timing (10) diagram.