Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSIT

Third Semester B.Tech Degree (S,FE) Examination December 2020 (2015 sche

Course Code: EC203 Course Name: SOLID STATE DEVICES (EC, AE)

PART A

Max. Marks: 100

Duration: 3 Hours

Marks Answer any two full questions, each carries 15 marks. Derive the expression $n_0p_0 = ni^2$ from fundamentals. 1 a) (7)A silicon sample is doped with $5x10^{16}$ As atoms/cm3 and $2x10^{16}$ Boron (8) b) atoms/cm3. Determine the electron and hole concentration at room temperature and draw the position of fermi level. With suitable assumptions, derive Einstein's relation for mobility of electrons in (7)2 a) a semiconductor b) Prove that under steady state carrier injection, the injected excess carrier (8) concentration is an exponentially decreasing function of distance. 3 Derive an expression for drift current density. (8) a) With necessary diagram derive the continuity equation of electrons and holes (7)b) PART B Answer any two full questions, each carries 15 marks. Derive the ideal diode equation and list the assumptions (10)a) A p+n Si diode has $N_A=10^{17}$ cm⁻³ and $N_D=10^{15}$ cm⁻³, area of cross section $A=10^{-3}$ (5)b) cm^2 and the lifetime in n and p regions be 1 µs at 300K. Determine the ideal diode current for applied voltage of 0.1 V. Given $Dp = 10cm^2/s$, $Dn = 36cm^2/s$. 5 Derive the expressions for i) Contact potential ii) transition region width iii) (9) a) maximum value of electric field. Illustrate with diagram the working of a tunnel diode. Explain its characteristic (6) b) curve. 6 a) Derive the expression for junction capacitance and storage capacitance of a PN (8) junction diode. With suitable energy band diagrams, explain Schottky contact. b) (7)

Page 1 of 2

4

08000EC203122004

PART C

ł

1

		Answer any two full questions, each carries 20 marks.	
7	a)	Derive the expression for terminal currents of a transistor.	(10)
	b)	Plot and explain the distribution of minority carriers of a PNP transistor in	(5)
		saturation mode of operation.	
	c)	Explain base width modulation and its effects.	(5)
8	a)	Derive the expression for drain current at linear region and saturation for a	(10)
		MOSFET.	
	b)	Draw and explain the drain characteristics of an n-channel MOSFET.	(5)
	c)	With diagram explain the principle of operation of FinFET.	(5)
9	a)	Derive the expression for capacitance of MOS system. Also draw the C-V	(10)
		Characteristics of an Ideal MOS capacitor and explain.	
	b)	Explain the terms emitter injection efficiency and base transport factor of a BJT.	(5)
	c)	The current components in a transistor are $In_E = 2.712 \times 10^{-6} A$, $Ip_E = 0.678 mA$,	(5)
		In _C =9.4x10 ⁻¹⁵ A and Ip _C =0.6779mA. Determine emitter injection efficiency(γ),	
		base transport factor(α_T) and short circuit common base current gain(α).	

-