#### 08000CS205122004

Name:

# APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B. Tech Degree (S,FE) Examination December 2022 (2015

#### **Course Code: CS205**

## **Course Name: DATA STUCTURES**

Max. Marks: 100

6

7

**Duration: 3 Hours** 

## PART A

#### Answer all questions, each carries 3 marks.

Marks

(4)

| 1 | How complexity of algorithm affects run time and space in terms of input size?. | (3) |
|---|---------------------------------------------------------------------------------|-----|
| 2 | Mention the significance of documentation.                                      | (3) |
| 3 | Differentiate Vector and Arrays.                                                | (3) |
| 4 | How is a 2D array represented in memory . Derive an expression to locate an     | (3) |
|   | element [i,j].                                                                  |     |

### PART B

### Answer any two full questions, each carries 9 marks.

5 a) What is the purpose of Frequency count? Calculate the total computation time for (4) the following code .

k=0;

for ( i=0;i<n; i=i\*2)

for (j=0; i < n; j=j\*2)

k++;

b) Let L1 be a singly linked list in memory. Write an algorithm to find the number of (5) non-zero elements in L1.
a) Explain Stepwise refinement technique in detail. (5)

- a) Explain Stepwise refinement technique in detail.b) Given a doubly linked list, write an algorithm that removes a node with a particular
  - value from the list and inserts it in the front.
- a) Define big-oh notation. Show that  $n^3 + 3n^2 + 2$  is  $O(n^3)$  (4)
  - b) Write an algorithm to add two polynomials using linked lists. Demonstrate your (5) algorithm with appropriate examples.

1

Reg No.:

## 08000CS205122004

## PART C

## Answer all questions, each carries3 marks.

| 8  |    | Show pictorially the contents an initially empty circular queue of size 6 after each | (3) |
|----|----|--------------------------------------------------------------------------------------|-----|
|    |    | of the following operations: insert (2), insert(3), insert(5), delete, insert (4),   |     |
|    |    | insert(9), delete, insert(10), insert(1), delete, insert(7), insert(8).              |     |
| 9  |    | Compare Complete and Fully binary tree with diagrams.                                | (3) |
| 10 |    | List down the applications of queue data structure.                                  | (3) |
| 11 |    | Show the structure of the binary search tree after adding each of the following      | (3) |
|    |    | values in that order: 1, 12, 5, 7, 1, 0.                                             |     |
|    |    | PART D<br>Answer any two full questions, each carries 9 marks.                       |     |
| 12 | a) | Write an algorithm for evaluating a postfix expression and evaluate the following    | (6) |
|    |    | postfix expression using the algorithm :AB +CD/ AD-EA^ +* where A=2, B=7,            |     |
|    |    | C=9, D=3, E=5.                                                                       |     |
|    | b) | Write notes on priority queue.                                                       | (3) |
| 13 |    | Write a function( C/ pseudo code ) to                                                | (9) |
|    |    | i) Insert an element into BST.                                                       |     |
|    |    | ii) Search an element from BST                                                       |     |
| 14 | a) | Given five memory partitions of 300Kb, 700Kb, 400Kb, 500Kb, 800Kb (in order),        | (5) |
|    |    | how would the first-fit, best-fit, and worst-fit algorithms place processes of 412   |     |
|    |    | Kb, 617 Kb, 112 Kb, and 626 Kb (in order)?                                           |     |

b) Write the output of inorder, preorder & postorder traversals on the following (4)tree.



PART E

Answer any four full questions, each carries10 marks.

- 15 Perform linear search in the given set of elements [12, 23, 27, 35, 39,42, 50] to a) (5) search 23 and 47.
  - Write an algorithm to perform DFS in a graph. Explain with an example. b)

-

# 08000CS205122004

| 16 | a) | Explain any two graph representation methods with example                              | (4)  |
|----|----|----------------------------------------------------------------------------------------|------|
|    | b) | Give an algorithm for performing a quick sort on a given set of integers.              | (6)  |
|    |    | Demonstrate working on set {30,38,45,17,14,28,13}                                      |      |
| 17 | a) | Trace the steps of selection sort for sorting the following numbers: 8 5 7 1 9 3.      | (5)  |
|    | b) | Write an algorithm to perform binary search. Discuss its time complexity               | (5)  |
| 18 | a) | Using insertion sort explain the different passes for sorting the list 35, 19, 66, 14, | (4)  |
|    |    | 8, 10, 57, 100                                                                         |      |
|    | b) | Explain heap sort with an example.                                                     | (6)  |
| 19 | a) | Define hashing. What are the properties of a good hash function?                       | (2)  |
|    | b) | Explain the different hashing functions with examples.                                 | (8)  |
| 20 | a) | Define collision. What is linear probing? The following keys 10, 16, 11, 1, 3, 4, 23   | (10) |
|    |    | and 15 are inserted into an initially empty hash table of length 10 using open         |      |
|    |    | addressing with hash function $h(k) = k \mod 10$ and linear probing. What is the       |      |
|    |    | resultant hash table?                                                                  |      |