Reg No.:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Name:

Eighth Semester B.Tech Degree Supplementary Examination October 2022 (2015 Scheme)

Course Code: EC402 Course Name: NANOELECTRONICS

Max. Marks: 100

Duration: 3 Hours

PART A

		Answer any two full questions, each carries 15 marks.	Marks
1	a)	Define the density of states in Nano structures. How it varies with dimensionality.	(5)
		Give the equation for density of states for 0D materials	
	b)	With suitable examples, explain different approaches for the synthesis of	(5)
		nanomaterials.	
	c)	Explain the basic properties of two-dimensional semiconductor nanostructure.	(5)
2	a)	Explain four major characteristic lengths in mesoscopic systems.	(8)
	b)	With necessary diagrams, explain the Sol-Gel process.	(7)
3	a)	Explain the process of pulsed laser deposition with neat sketches.	(7)
	b)	With suitable equations, explain parabolic quantum well.	(4)
	c)	Differentiate between wet and dry oxidation methods.	(4)

PART B

Answer any two full questions, each carries 15 marks.

4	a)	Explain the operation of Scanning Tunnelling microscope.		(8)
	b)	Explain the working of MOSFET structure.		(7)
*5	a)	Explain Kronig-Penny model of superlattice.	•	(8)
	b)	Explain the principle behind X-Ray Diffraction Spectroscopy.		(7)
6	a)	How Atomic Force microscopy is used to probe nanomaterials?		(8)
	b)	Explain the working of modulation doped quantum wells.		(7)

PART C

	Answer any two full questions, each carries 20 marks.				
7	a)	Explain different electron scattering mechanism in parallel transport.	(10)		
	b)	Illustrate the principle of NEMS.	(5)		
	c)	Explain Coulomb blockade effect.	` (5)		

Pages: 2

8	a)	Explain the working of single electron transistor.		(10)
	b)	Explain Aharonov-Bohm effect.		(5)
	c)	Illustrate the working of quantum dot LED.		(5)
9	a)	Explain the process of perpendicular transport in nanostructures.		(10)
	b)	Explain different types of CNT transistors.		(5)
	c)	With suitable diagrams, explain the working of RTD.		(5)

Page 2of 2

3