APJ ABDULKALAM TECHNOLOGICAL UNIVERSITIX

• (Pages: 3)

08 PALAKKAD CLUSTER

Q. P. Code: PE0821141-II

FIRST SEMESTER M.TECH. DEGREE EXAMINATION DECEMBER 2021

Branch: Electrical and Electronics Engineering

08EE6211 Applied Mathematics

(Common to PE)

Time:2 hour 15 minutes

Answer all six questions.

Modules 1 to 6: Part 'a' of each question is compulsory and answer either part 'b' or part 'c' of each question.

Q. No.

Module 1

1.a Determine whether the following polynomials in t over \mathbb{R} are linearly 3 dependent

 $x_1 = 1 + t + t^2, x_2 = -2 + 3t - 7t^2, x_2 = 4 + 8t$

Answer b or c

b Let $v = \mathbb{R}^3$. Examine whether each of the following sets of vectors is a basis **6** of v

i) S={ $x_1 = (1, 2, 3), x_2 = (2, -5, 2), x_3 = (-7, 5, 9), x_4 = (8, -3, -4)$ }

ii) S={
$$x_1 = (1, 2, 1), x_2 = (2, 1, 0), x_3 = (1, -1, 2)$$
}

• iii)
$$S = \{x_1 = (1, 2, 3), x_2 = (2, 3, 4), x_3 = (3, 4, 5)\}$$

c Construct a basis for \mathbb{R}^3 having (2, 0, 6, 1) and (3, 0, 7,-2) as two of its 6 elements

Q. No.

Module 2 🛁

2.a Solve the following differential equation

$$\frac{dz}{dx} + \left(\frac{z}{x}\right)\log z = \frac{z}{x}(\log z)^2$$

Answer b or c

b Solve
$$\frac{d^2y}{dx^2} - 4y = x \sinh x$$

Specialization: Power Electronics

Name:

Reg. No:....

Max.Marks: 60

Marks

3

6

1

Solve
$$(3x + 2)^2 \frac{d^2y}{dx^2} + 5(3x + 2)\frac{dy}{dx} - 3y = x^2 + x - 1$$

С

.

C

Q. No.	Module 3	Marks
3.a	Obtain the fourier sine transform of $f(x) = 4x$ for $0 < x < 1$	3
	= 4 - x for 1 < x < 4 = 0 for x > 4	
	Answer b or c	
b	If $f(x) = x$ for $0 < x < \Pi/2$	6
	$= \Pi - x \text{ for } \Pi/2 < x < \Pi$	
	Show that $f(x) = \frac{4}{\pi} \left[\sin x - \frac{\sin 3x}{3^2} + \frac{\sin 5x}{5^2} - \cdots \right]$	
C	Obtain the fourier expansion of x sinx as a cosine series in $(0, \Pi)$. Hence show that	6
	$\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots = \frac{\Pi - 2}{4}$	
Q. No.	Module 4	Marks

- 4.a Show that $u = 0.5 \log(x^2 + y^2)$ is harmonic and find its harmonic conjugate 3 function
 - Answer b or c

b i) Evaluate
$$\oint \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$$
 over the circle $|z| = 3$
ii) Evaluate $\oint \frac{e^z}{(z^2 + \pi^2)^2} dz$ over the circle $|z| = 4$

Find the Taylor's series expansion of
$$f(z) = \frac{2z^3 + 1}{z^2 + z}$$
 about $z = i$ 6

Q. No.	Module 5	Marks
5.a	Find the Laurent's expansion of $f(z) = \frac{z}{(z-1)(z-3)}$ in the region $ z-1 < 2$	4
	Answer b or c	

2

		And and a state of the state of
b	i) Evaluate Evaluate $\oint \frac{z-3}{z^2+2z+5} dz$ over the circle i) $ z = 1$ ii) $ z+1-i = 23$.	OLEGE
	ii) Find the residue of $f(z) = \frac{z^3}{(z-1)^4(z-2)(z-3)}$ at its pole and hence evaluate	
	$\oint f(z)dz$ over the circle $ z = 2.5$	BR LE
C	i) Show that $w = \frac{1-z}{1+z}$ maps the real axis of z plane into the circle $ w = 1$, and	State 1
	the half plane y>0 into the interior of the unit circle $ w = 1$ in the w plane	RUTHUR
	ii) Consider the transformation $w = ze^{i\pi/4}$ and determine the region in the w	
	plane corresponding to the triangular region bounded by the lines $x = 0, y = 0$	2
•	and $x + y = 1$ in the w plane	
Q. No.	Module 6	Marks
6.a	Analyse the importance of unconstrained optimization technique.	4
*,.		

Answer b or c

- **b** Minimize $f(x_1, x_2) = x_1 x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ from the starting **8** point $X_1 = \begin{cases} 0 \\ 0 \end{cases}$ using Hooke & Jeeve's Method.
- c Explain pattern search method with a neat flow chart

1

8