02000CST292072101

Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fourth Semester B.Tech (Hons) Degree Examination June 2022 (2020 Admn)

Course Code: CST292 Course Name: NUMBER THEORY

Max. Marks: 100

Duration: 3 Hours

Pages

PART A

	(Answer all questions; each question carries 3 marks)	Marks
1	Show that Z_2 forms a field	(3)
2	Find LCM of 1240 and 5300 using GCD	(3)
3	Define Fermat and Mersenne primes with example.	(3)
4	Solve the congruence equation $17 \text{ X} \equiv 3 \pmod{29}$	(3)
5	Define Carmichael Number and use the definition to show that 561 is a Carmichael	(3)
	number	
6	Define Euler's Totient function $\phi(n)$ and using prime factorization compute	(3)
	<i>φ</i> (60).	
7	Describe Dirichlet product and its properties.	(3)
8	Compute $\left(\frac{31}{103}\right)$	(3)
9	Express 180 as a sum of two squares.	(3)
10	Find a continued fraction expansion for $\frac{47}{17}$	(3)

PART B

(Answer one full question from each module, each question carries 14 marks)

Module -1

11	a)	Find gcd d of $a=299$ and $b=221$ and express d as $ax + by$ where x and y are integers.	(7)
	b)	State and prove division algorithm.	(7)

OR

12	a)) Describe the properties of modular arithmetic and congruence.										(7)		
	1 \	T 1 *	-	1 1 -				-					11.2	

b) Explain Extended Euclidean algorithm. Find the multiplicative inverse of 23 mod (7) 100.

02000CST292072101

Module -2

13	a)	Recall the use of Miller -Rabin Test for Primality. Check whether 561 is prime or	(7)						
		composite.							
	b)	Find the remainder when 18! is divided by 23	(7)						
		OR							
14	a)	Explain fermat's factorization method and use it to factor 5959.	(7)						
	b)	Solve the system of congruences using Chinese remainder theorem,	(7)						
	$x \equiv 2 \mod 3, x \equiv 5 \mod 4, x \equiv -3 \mod 7$								
		Module -3							
15	a)	Define a pseudo prime. Show that 561 is an absolute pseudoprime.	(7)						
	b)	Solve the polynomial power congruence $x^3 + 4x \equiv 4 \mod 343(\text{hint}:343=7^3)$	(7)						
		OR							
16	a)	Explain Set of Units U_n in \mathbb{Z}_n with example. Determine if 5 is a primitive root of	(8)						
		107.							
	b)	Differentiate public key encryption from private key encryption.	(6)						
		Module -4							
17	a)	Define Quadratic Residues. Find quadratic residues of 11	(7)						
	b)	Outline the Quadratic law of reciprocity for Jacobi symbols.	(7)						
		OR							
18	a)	Illustrate that Mobius function is a multiplicative function.	(7)						
	b)	State and prove properties of Legendre's symbol.	(7)						
		Module -5							
19	a)	State and prove Legendre's Three-Square theorem.	(7)						
	b)	Define a Gaussian integer. Factorize the Gaussian integer (-19 + 43i)	(7)						
۴		OR							
20	a)	State and prove Fermat's Theorem on the Sum of Two Squares	(7)						
	b)	Define Infinite continued fraction. Compute c ₄ for [1,2,1,2,1]	(7)						

- 1

.