02000ECT204052101

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY Fourth Semester B.Tech Degree Examination June 2022 (2019 scheme)

Course Code: ECT204

Course Name: SIGNALS AND SYSTEMS

Max. Marks: 100

1

2

3 4 5

,6

7

8

9

10

à

Duration: 3 Hours

PART A

(Answer all questions; each question carries 3 marks)	Marks
Sketch the signal $x(t) = [e^{-t}u(t)] \sum_{n=-\alpha}^{\alpha} \delta(t-nT)$ where T is any positive	3
integer.	
What is the output sequence of an LTI system with impulse response h(n)=[2, 2]	3
to the input $x(n) = [1, 2, 3, 1]$?	
State the Dirichlet's conditions for the convergence of Fourier series.	3
Prove time-shifting property of Laplace transform.	3
A continuous time signal $x(t) = \cos 40t - \cos 60t$ is sampled with a time	3
period T. Can $x(t)$ be recovered from the samples $x(nT)$ for $= \pi/30$? State the	
reason for the same.	
Find the frequency response $H(\omega)$ and impulse response of an LTI system	3
characterized by the differential equation	
$\frac{dy(t)}{dt} + ay(t) = x(t); a > 0$	
Define Energy Spectral Density of a discrete time signal? How can you relate it	3
to the DTFT of the signal?	
Determine the Fourier series coefficients of the signal	3
$x(n) = 2 + \cos\left(\frac{\pi}{3}n + \frac{\pi}{4}\right).$	
If the ROC of system function of an LTI system is $ z > 0.8$, comment on the	3
stability and causality of the system with proper justification.	
Give the relation between DTFT and z-transform of a discrete time signal.	3

02000ECT204052101

PART B

(Answer one full question from each module, each question carries 14 marks)

Module -1

a) Determine whether the following system is static, time invarient, linear and 8 causal. (x and y denote input and output respectively). Give explanation for each.

$$y(t) = t^2 x(t) + x(t-2)$$

6

8

8

6

b) Check whether the following signals are energy or power signals.

i)
$$x(t) = e^{-a|t|}$$
; a>0

ii)
$$x(t) = tu(t)$$

12 a) Find the output of an LTI system with impulse response h(t) to the input x(t). Given x(t) = u(t) - u(t - 2) and h(t) is shown in Figure 1.

b) Sketch the signals (i) y(t) = u(0.5t + 2) (ii) y(n) = u(n) + u(n-5) 6

Module -2

13

Find the complex exponential Fourier series of the periodic signal shown in Figure 2.

b) If x(t) has a Fourier Transform, find the Fourier Transform of

i)
$$x_1(t) = x(4t-3)$$

ii)
$$x_2(t) = \frac{a}{dt}x(t-3)$$

Page 2 of 4

02000ECT204052101

14 a) Find the Fourier Transform of the signal x₁(t) shown in Figure 3 using 8 convolution property and time shift property of Fourier Transform.

b) Find the Laplace Transform and ROC of the signal

$$x(t) = (e^{-2t} + 3e^{-3t})u(t)$$

6

7

7

7

Module -3

$$H(s) = \frac{3s}{2s^2 + 10s + 12}$$

b) Determine the Nyquist rate of sampling for the signals

i) $x(t) = cos (150\pi t) sin (50\pi t)$

1

ii)
$$x(t) = sin(150\pi t) + sinc^2 (150\pi t)$$

16 a) A continuous time LTI system is described by the differential equation

$$\frac{dy(t)}{dt} + 5y(t) = x(t)$$

Determine the response of the system to the input $x(t) = e^{-2t}u(t)$ using Fourier Transform.

b) Consider the continuous time signal (t) = cos (200πt) + sin (320πt). What 7 will be the Nyquist rate of sampling for the signal? If the signal is sampled at 300samples/sec, write the discrete time signal x[n] obtained after sampling.
What will be the frequency components at the output if the sampled signal is passed through an ideal low pass filter with cut off frequency 250Hz?

Module -4

17 a) Find the DTFT of the following sequences using properties given
$$x(n)$$
 has a 7
DTFT $X(e^{j\omega})$

(i)
$$x_1(n) = x(1-n)$$

(ii)
$$x_2(n) = e^{j\frac{\pi}{4}n}x(n-2)$$

Page 3 of 4

b) Consider an LTI system that is characterized by the difference equation

$$y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n)$$

Find the frequency response $H(e^{j\omega})$ and the impulse response h(n) of the system.

18 a) Find the DTFT of the given signal x(n)

$$\mathbf{x}[n] = \begin{cases} 1, & |n| \le N_1 \\ 0, & |n| > N_1 \end{cases}$$

b) State and prove the convolution property of DTFT.

Module -5

19 a) Determine the z-transform for the following signal. Sketch the pole-zero plot and 7 indicate the ROC.

$$x(n) = \left(\frac{1}{2}\right)^{n-1} u(n+3)$$

 b) For the LTI system with system function H(z) find the impulse response so that 7 the system is stable.

$$H(z) = \frac{5 - 10z^{-1}}{1 - 3.5z^{-1} + 1.5z^{-2}}$$

Can this system be both stable and causal?

20 a) Find the inverse z-transform of

$$X(z) = \frac{2z^2 + 16}{(z+1)(z-2)}$$

for all possible ROCs.

b) Write down any four properties of ROC for Z transform.

7

7

10

4

7