02000EET204052104

Reg No.:_

C

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fourth Semester B.Tech Degree Examination June 2022 (2019 scheme)

Course Code: EET204 Course Name: ELECTROMAGNETIC THEORY

Ma	x. M	arks: 100 Duration: 3	Hours
		PART A	Marke
		(Answer all questions; each question carries 3 marks)	iviarks
1		Two vectors $\mathbf{A} = 4\mathbf{a}\mathbf{x} + 8\mathbf{a}\mathbf{y}$ and $\mathbf{B} = 12\mathbf{a}\mathbf{y} - 8\mathbf{a}\mathbf{z}$ are on the same plane.	3
		Find the vector normal to the plane.	
2		Develop the equation for differential volume dv in Spherical coordinate system.	3
		Draw necessary figure.	
3		State Coulomb's law and write the equation in vector form.	3
4		What are equipotential surfaces. Mention two characteristics of equipotential	3
		surfaces.	
5		Derive the expression for H at a point due an infinitely long conductor carrying a	3
		current I.Use Biot Savart's law.	
6		State Ampere's circuital law for steady magnetic fields. Write the point form of	3
		Ampere's circuital law.	
7		Describe the characteristics of uniform plane waves.	3
8		What is meant by a Poynting vector. Mention its significance.	3
9		What are the primary constants of Transmission line. Draw a neat figure to	3
		represent it.	
10	211	Define characteristic impedance of a lossless line.	3
		PART B	
(Answer one full question from each module, each question carries 14 marks)			
		Module -1	_
11	a)	Find the Vector directed from $(2, -5, -2)$ to $(14, -5, 4)$ in Spherical coordinate	7
		system.	
	b)	Define Gradient of a Vector and Mention three characteristics of it.	7
12	a)	State Divergence of a vector field and Derive the expression for Divergence of a	7
		vector field in integral and point forms.	
	b)	Derive Coordinate transformation between Cartesian to Cylindrical Coordinates	7
		with necessary figure.	_

02000EET204052104

Module -2

- 13 a) State Gauss's law and obtain Electric field intensity E at any point due to an 7 infinite sheet of charge with the help Gauss's law. Draw necessary figures.
 - b) Obtain the Potential at a point (1,2,5) due to a dipole with centre at origin and of 7 dipole moment P = 20Cm acting along the Z axis. Also find the Potential at point (1,2,0).
- 14 a) Find the Voltage between two infinitely long conductors parallel to z axis with 7 charges +4nC and -4nC are passing through points (0,-4,0) and (0,4,0) respectively. Assume free space.
 - b) Derive the expression for Capacitance per unit length between two infinitely long 7 conductors.

Module -3

- 15 a) List all the Maxwell's equation for static Electric and Magnetic fields in Integral 7 and Point forms. Write the significance of each in one sentence.
 - b) An uniform electric field $E_1 = 5ax 2ay + 4az$ incidents at the boundary between 7 two dielectrics of permittivity $\epsilon_1 = 2$ and $\epsilon_2 = 4$ respectively. Find the Vector E_2 . Assume the boundary is at Z=0 plane.

7

7

- 16 a) Derive the expression for modified form of Ampere's circuital law.
 - b) The magentic flux density at a point which is at a perpendicular distance of 2m from an infinitely long current carrying conductor along Z axis is 0.05 mWb/sq.m. Find the value of dc current passing through the conductor. Also find the value of B at point (1, 2, 5) during the same condition as above. Assume free space.

Module -4

F7 Derive Poynting Theorem. Describe each term in the equation with one sentence. 14 18 Calculate the intrinsic impedance η , the propagation constant γ , and the wave 14 velocity *u* at a frequency f = 50 Hz for a good conducting medium in which $\sigma =$ 58 S/m and $\mu r = 1$.

Module -5

Describe the terms; a) SWR. b) Impedance matching c) Propagation constants.
Derive the wave equations for Voltage and Current in a transmission line with 14 neat figure.

Page 2 of 2