02000EET206052106

Reg No.:_

D

.

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fourth Semester B.Tech Degree Examination June 2022 (2019 scheme)

Course Code: EET206

Course Name: DIGITAL ELECTRONICS

Max. Marks: 100

Duration: 3 Hours

	PART A (Answer all auestions: each auestion carries 3 marks)	Marks
1	Perform the addition $37_{16} + 29_{16}$	3
2	Using 2's complement method, perform the additions :	3
2	2^{2} s complement method, perform the additions :	
2	a) $21 - 42$ b) $-40 - 23$	2
3	Dsing Boolean algebra techniques, simplify the expression	3
	BD+B(D+E)+D(D+F)	
4	Convert the expression $(A+B)(C+B)$ to standard SOP form	3
5	What are select lines and what is its importance in the case of multiplexers and	3
	demultiplexers, explain with example.	
6	Design full adder circuit with decoder IC	3
7	What is the difference between J-K flipflop and S-R flipflop, Explain with truth	3
	table and logic implementation.	
8	With respect to circuit what is the difference between a ring counter and a	3
)	johnson counter.	
9	Differentiate between moore and mealy machines	3
10	State the applications of FPGA	3
¥	PART B (Answer one full question from each module, each question carries 14 marks)	
	Module -1	
11	Draw and explain the circuit for CMOS NOR gate	14
	What are the parameters significant to the logic families, Explain any three and	
	compare TTL and CMOS logic on these parameters	
12	Convert the following numbers:	14
	a) $(1010110110111)_2 = ()_{16}$	
	b) $(0.4D8)_{16} = ()_2$	

c) $(214)_{10} = (-)_{16}$

02000EET206052106

- d) $(1010110110111)_2 = ()_8$
- e) $(0.725)_{8} = ()_{2}$
- f) $(9264)_{10} = ()_8$
- g) $(467)_8 = ()16$

1

Module -2

13	a)	Convert the SOP expression $AB + \overline{A}B + \overline{A}C\overline{D}$ to standard SOP form	5		
•	b)	State and explain De Morgans theorems	4		
	c)	Apply Demorgans theorm to the expression	5		
		$\overline{ABC} + (\overline{D^- + E})$			
14		Explain a look ahead carry generator with relevant expressions and circuit and	14		
		give reason for its high speed of operation			
Module -3					
15		Implement the Boolean function	14		
		$F(A,B,C,D) = \sum (1,3,4,11,12,13,15)$ using 8:1 MUX and external gates			
16	a)	Explain the operation of a 2 bit magnitude comparator	7		
	b)	Write the applications of a multiplexer and describe the implementation of a	7		
		three variable function using multiplexer with a suitable example.			
Module -4					
17	a)	What is Race-Around condition of J-K Flip-Flop? Suggest a method to avoid	7		
		Race-Around condition of J-K Flip-Flop			
3	b)	Design and implement a J-K flip flop using D flipflop	7		
18		What is modulus of a counter and design a synchronous MOD-5 counter with	14		
		state diagram and relevant truth tables.			
Module -5					
19	a)	What are the important specifications of a A/D converters	• 7		
	b)	Why a weighted resistor type D/A converter is called so. Draw the schematic and	7		
		explain.			
20		Implement a full adder using Verilog	14		
