0300CST302052201

Reg No .:_

A

4

Name: APJ ABDUL KALAM TECHNOLOGICAL UNIVERS

Sixth Semester B.Tech Degree Examination June 2022 (2019 Sche

Course Code: CST302 Course Name: COMPILER DESIGN

Max	X. IVI	arks: 100 Duration: 5	Hours
		PARTA Answer all questions, each carries 3 marks.	Marks
1		Find the lexemes in the following programming statement.	(3)
		sum = a * (b - 10);	
		Define tokens and patterns for the above statement.	
2		Explain the importance of sentinels in input buffering used in lexical analysis	(3)
3		With an example write the steps to remove left recursion?	(3)
4		Find FIRST set and FOLLOW set of each nonterminal in the following grammar	(3)
		$E \rightarrow E A E (E) - E id$	
		$A \rightarrow + *$	
5		What are viable prefixes?	(3)
6		What are the different parsing conflicts in the SLR parsing table?	(3)
7		Differentiate between synthesized attributes and inherited attributes with an	(3)
		example.	
8		What is the role of activation record in compiler design?	(3)
9		Explain code motion with an example.	(3)
10		Write the algorithm for partitioning a sequence of three-address instructions into	(3)
k		basic blocks	
		PART B	
	A. 7	Answer one full question from each module, each carries 14 marks.	
11		Module I	(9)
11	a)	Explain the working of different phases of a complier. Inustrate with a source	(0)
	L)	Europeine different compiler construction tools	(6)
	D)	Explain different compiler construction tools.	(0)
12		UK Evaluin the role of transition diagrams in recognition of takens	(7)
12	a) h)	Explain the role of transition diagrams in recognition of tokens.	(7)
	0)	Explain bootstrapping with an example.	(\prime)

0300CST302052201

Module II

13	a)	i. Show that the gramma	(6)
		S -> iCtSeS iCtS b , C -> a is ambiguous.	
		ii. Eliminate ambiguity from the above grammar.	
	b)	Construct a Recursive descent Parser for handling Arithmetic Expressions.	(8)
		OR	
14	a)	Write Non-recursive predictive parsing algorithm.	(6)
	b)	Prove that the following grammar is not LL(1)	(8)
		$S \rightarrow iEtSS' a$	
		$S \rightarrow eS \varepsilon$	
		$E \rightarrow b$	
		Module III	
15	a)	Construct canonical LR(0) collection of items for the grammar below.	(9)
		$S \rightarrow L = R R$	
	a. ***	$L \rightarrow * R \mid id$	
		$R \rightarrow L$	
		Prove that this grammar is not SLR(1).	
	b)	What is handle pruning? Indicate the handles in the reduction of the sentence	(5)
		aaabbb to the start symbol using the grammar	
		$S \rightarrow aABb$, $A \rightarrow aA a, B \rightarrow bB b$	
		OR	
16	a)	Derive LR (1) parsing table for following grammar	(9)
		$S \rightarrow Aa \mid bAc \mid Bc \mid bBa$	
		$A \rightarrow d$	
		$B \rightarrow d$	
	b)	Write all moves by the LR parser for parsing the input 'bdc'. [use the parsing	(5)
		table created in question number 16.a]	
		Module IV	
17	a)	- Write the SDD for a simple type declaration and draw the annotated parse tree for	(7)
		the declaration float a, b, c.	
	b)	With an SDD for a desk calculator, write the steps involved in the bottom up	(7)
		evaluation for the expression $(3*5) - 2$.	

.

0300CST302052201

OR

18	a)	Explain static allocation and heap allocation strategies.	(7)
	b)	Construct the DAG and three address code for the expression $a+a*(b-c)+b*(b-c)$	(7)
		c)+b	
		Module V	
19	a)	With suitable examples explain loop optimization techniques	(7)
	b)	With suitable example of a basic block, explain the code-improving	(7)
		transformations of a basic block.	
		OR	
20	a)	Explain issues in design of a code generator	(6)
	b)	Write the code generation algorithm. Using this algorithm generate code	(8)
		sequence for the expression $x = (a - b) + (a + c) + (a + c)$	

1

1

N