Reg No.:____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Second Semester B.Tech Degree Examination June 2022 (2019 scheme

Course Code: MAT102

Course Name: VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND

TRANSFORMS (2019-Scheme)

Max. Marks: 100

Duration: 3 Hours

PART A

Answer all questions, each carries 3 marks.

- Find the directional derivatives of $f(x,y) = x^2 3xy + y^2$ at the point P(2,1) in the direction of $\vec{a} = \frac{1}{3}\vec{i} + \frac{2}{3}\vec{j}$.
- Evaluate $\int_C 3x y dy$ where C is the line segment joining (0,0) and (1,2). (3)
- Determine the sources and sinks of the vector field $\vec{f}(x,y) = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$. (3)
- Using Divergence theorem evaluate $\iint_{S} \vec{f} \cdot \vec{n} \, dS \quad \text{where } \vec{f} = 2x\vec{i} + 4y\vec{j} 3z\vec{k} \text{ and } S$ (3)

is the surface of the sphere $x^2 + y^2 + z^2 = 1$

- Solve the initial value problem y'' + 5y' + 6y = 0, y(0) = 1, y'(0) = 2 (3)
- 6 Solve y''' y' = 0 (3)
- 7 Find the Laplace Transform of $(\sin t + \cos t)^2$ (3)
- Find the inverse Laplace Transform of $\frac{e^{-3s}}{(s+2)^2}$ (3)
- Find the Fourier sine transform of e^{-x} (x > 0) (3)
- Find the Fourier Sine Integral of $f(x) = \begin{cases} \sin x & \text{if } 0 < x < \pi \\ 0 & \text{if } x > \pi \end{cases}$ (3)

PART B

Answer one full question from each module, each question carries 14 marks

Module-I

11 a) Find the parametric equation of the tangent line to the curve

(7)

0100MAT102052005

$$\vec{r}(t) = 2\cos \pi t \vec{i} + 2\sin \pi t \vec{j} + 6t \vec{k}$$
 at the point $t = \frac{1}{3}$

- Show that the vector field $\vec{f}(x,y) = 2xy^3\vec{i} + 3y^2x^2\vec{j}$ is conservative and find ϕ such that $\vec{f} = \nabla \phi$. Hence evaluate $\int_{(2,-2)}^{(-2,0)} 2xy^3 dx + 3y^2x^2 dy$. (7)
- 12 a) Find the position and velocity vectors of the particle given $\vec{a}(t) = (t+1)^{-2} \vec{j} e^{-2t} \vec{k}$, $\vec{v}(0) = 3\vec{i} \vec{j}$, $\vec{r}(0) = \vec{k}$ (7)
 - b) If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ and let $\vec{F}(r) = f(r)\vec{r}$ prove that $div\vec{F} = 3f(r) + \vec{r}f'(r)$ (7)

Module-II

- 13 a) Use Green's theorem to find the work done by the force field $\vec{f}(x,y) = xy\vec{i} + \left(\frac{x^2}{2} + xy\right)\vec{j}$ on a particle that starts at (4,0) transverse the upper (7) semicircle $x^2 + y^2 = 16$ and returns to its starting point along the x-axis.
 - Find mass of the lamina that is a portion of cone $z = \sqrt{x^2 + y^2}$ that lies between the planes z = 1 and z = 3, if the density is $\phi(x, y, z) = x^2 z$ (7)
- 14 a) Let σ be the portion of the surface $z = 1 x^2 y^2$ that lies above the xy-plane and σ is the oriented upwards. Find the flux of the vector field $\overrightarrow{F}(x,y,z) = x \,\hat{\imath} + y \,\hat{\jmath} + z \hat{k} \text{ across } \sigma. \tag{7}$
 - Use stokes theorem to evaluate $\oint \vec{F} \cdot dr$ where $\vec{F}(x, y, z) = z^2 \vec{i} + 3x \vec{j} y^3 \vec{k}$ and CC is the circle $x^2 + y^2 = 1$ in the XY plane with counter clockwise orientation looking down the positive Z axis

Module-III

- Using the method of undetermined coefficients solve, $y'' 4y = xe^x$ (7)
 - Using the Method of variation of parameters solve, $y'' 4y' + 5y = \frac{e^{2x}}{\sin x}$ (7)

0100MAT102052005

16 a) Solve the initial value problem, by method of undetermined coefficients
$$y'' + 4y = 8x^{2}$$
, $y(0) = -3$, $y'(0) = 0$ (7)

b) Solve the initial value problem
$$x^2y'' + 3xy' + y = 0$$
, $y(1) = -3$, $y'(1) = 1$ (7)

Module-IV

17 a) Using Laplace Transform solve
$$y'' + 5y' + 6y = e^{-t}$$
 $y(0) = 0$, $y'(0) = 1$ (7)

Using convolution theorem find the Inverse Laplace Transform of

$$\frac{s^2}{\left(s^2+a^2\right)\left(s^2+b^2\right)}\tag{7}$$

Find the inverse Laplace Transform of
$$\frac{s+8}{s^2+4s+5}$$
b) Using Laplace Transform solve $y''+16y=4\delta(t-3\pi)$ $y(0)=2$, $y'(0)=0$ (7)

b) Using Laplace Transform solve
$$y'' + 16y = 4\delta(t - 3\pi)$$
 $y(0) = 2$, $y'(0) = 0$ (7)

Module-V

19
a) Find the Fourier Transform of
$$f(x) = \begin{cases} e^x & \text{if } -a < x < a \\ 0 & \text{otherwise} \end{cases}$$
 (7)

b) Find the Fourier Cosine integral of
$$f(x) = \begin{cases} \cos x & \text{if } 0 < x < \frac{\pi}{2} \\ 0 & \text{otherwise} \end{cases}$$
 (7)

20
a) Find the Fourier Cosine Transform of
$$f(x) = \begin{cases} x^2 & \text{if } 0 < x < 1 \\ 0 & \text{if } x > 1 \end{cases}$$
 (7)

b) Find the Fourier Transform of
$$f(x) = \begin{cases} a - |x| & \text{if } |x| < a \\ 0 & \text{otherwise} \end{cases}$$
 (7)