	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSIT	Y/GG		
	08 PALAKKAD CLUSTER	W REDUCAT		
	Name:	I S		
Q. P. C	ode: CESP0822222-I (Pages: 2) Reg. No:	21 2		
	SECOND SEMESTER M.TECH. DEGREE EXAMINATION JULY	022 SAID		
Brancl Engine	a: Electronics and Communication Specialization: Communication Entering Signs	ngineering & T		
	08EC6222 ESTIMATION AND DETECTION			
Γime:3	Hours N	lax.Marks: 60		
	Answer all six questions.			
Modu	les 1 to 6: Part 'a' of each question is compulsory and answer either part 'b' or part 'c' of e	ach question.		
). No.	Module 1	Marks		
1. a	Explain the concept of binary decision.	3		
	Answer b or c			
b	Obtain the decision region for the given conditional pdf using Neyman-			
	Pearson criterion $P(z/m_1) = \frac{1}{\sqrt{2\pi}} e^{\frac{-z^2}{2}} \qquad P(z/m_2) = \frac{1}{\sqrt{2\pi}} e^{\frac{-(z-1)^2}{2}}$	6		
	Let $P(d2/m1) = 0.25$, $Q(0.674) = 0.25$			
c	Derive the expression for decision rule using Probability of Error criterion	6		
NT.	W-1-1-0	24-1-		
. No.	Module 2	Marks		
2. a	Explain about the errors in binary decision problems.	3		
	• Answer b or c			
b	Solve the decision problem with the following conditional			
	probabilities using Bayes decision rule $P(z/m_1) = \frac{1}{2}e^{- z }$ $P(z/m_2)$	•		
	$=e^{-2 \mathbf{z} }$ for z>0 and use the following costs $C_{11}=C_{22}=0$, $C_{12}=2$, $C_{21}=2$			

2 8		
Q. No.	Module 3	Marks
3. a Explain vector obser	vation concept	3

c Derive the expression for decision rules to detect a binary observation with

different probability density functions using Min-Max criterion.

Answer b or c With neat sketches explain match filter receiver. Discuss about the General Gaussian problem. Q. No. Module 4 Marks Differentiate between Estimation and Decision. 3 Answer b or c Discuss about the Linear minimum-variance method. Discuss about maximum likelihood estimation with an example. 6 Q. No. Module 5 Marks 5. a Briefly explain the concept of sequential estimation 4 Answer b or c b Let θ be a three-dimensional Gaussian vector with mean $\mu=0$ and variance 1 1 The observation is given by $z=H\theta+n$, where $H=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ and $V_0 = 0$ the noise is white and Gaussian with unit variance. Find the MAP estimate of θ . c Explain about Nonlinear estimation.

Q. No.	Module 6		Marks
6.a	Explain Kalman filter		4
*	Answer b or c		
b	Explain the concept of unbiased estimators with an example		R
	Explain Asymptotic properties		•