10000EE403122006

B

1

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Seventh Semester B. Tech Degree Supplementary Examination June 2022 (2015 Scheme)

Course Code: EE403

Course Name: DISTRIBUTED GENERATION AND SMART GRIDS

Max. Marks: 100

Duration: 3 Hours

PART A

Duration. 5 Hours

IONA

Pages: 2

EO,

SUR /

		Answer all questions, each carries 5 marks.	Marks
1		Elaborate the major challenges in the deployment of microgrid in Indian	(5)
		scenario. Give suggestions to overcome these challenges.	
2		Explain how CHP plants can improve the overall efficiency in power generation.	(5)
3		Discuss the advantages of plug in hybrid electric vehicles over battery electric	(5)
		vehicles in smart grid.	
4		Explain the role of smart energy efficient end use devices and smart distributed	(5)
		energy resources in smart grid implementation.	
5		Discuss the various communication technologies that can be used for home area	(5)
		network.	
6		Explain how feeder automation can improve the reliability of the supply in an	(5)
		electricity grid.	
, 7		Discuss the short duration and long duration power quality events with neat	(5)
		illustrations.	
8		Explain various power quality issues in smart grid.	(5)
		PART B	
¥		Answer any two full questions, each carries 10 marks.	
9	a)	Give the potential benefits of distributed generation. Where do you think the	(5)
		distributed generation systems would have the greatest advantage?	
	b)	Write a note on (i) active power control (ii) reactive power control, and	(5)
		(ii) voltage control in microgrid.	
10	a)	Compare AC and DC microgrids and examine their scope in future power	(5)
		system.	
	b)	Explain the role of Central controller and Microsource controller in Microgrid	(5)
11	a)	Explain the role of battery, ultracapacitor and flywheel in future electricity grid.	(5)

10000EE403122006

b) With a neat block diagram explain the operation of a grid connected solar PV (5) generation system.

PART C

Answer any two full questions, each carries 10 marks.

(5)

(5)

(5)

- 12 a) With a neat block diagram explain the NIST smart grid reference architecture.
 - b) Peak usage and off-peak usage of a customer for a month are 200 kWh and 800 (5) kWh under ToU tariff with peak usage electricity price of Rs. 4/kWh and off-peak price of Rs. 1/kWh. Estimate the electricity charge of the customer for the month. Considering 20% reduction in peak usage under (i) peak shifting and (ii) peak clipping, determine the monthly electricity cost reduction under each of the schemes.
- 13 a) With a neat block diagram elaborate working of smart sensors. (5)
 - b) A power station has a maximum demand of 30 MW and a connected load of 50 (5) MW and; the units of energy generated per annum is 70 x 10⁶ KWh. Determine (1) demand factor and (2) load factor.
- 14 a) Discuss any five load shaping methods?
 - b) Differentiate between Demand Response (DR) and Demand Side Management (5) (DSM).

PART D

Answer any two full questions, each carries 10 marks.

- 15 a) With a neat block diagram discuss the role of Advanced Metering Infrastructure (5) (AMI) in smart grid implementation.
 - b) Explain cloud computing. Propose a cloud architecture for smart grid. (5)
- 16 a) Draw the communication network architecture for smart grid. Discuss the (5) functioning of each component.
 - b) A square wave with 50% duty cycle has the Fourier series representation

$$v(t) = \frac{4}{\pi} \sum_{n=1,3,5,\dots}^{\infty} \frac{\sin(2n\pi ft)}{n}$$

Determine the Total Harmonic Distortion (THD) and harmonic Distortion Index (DIN) of the waveform considering upto 7th harmonic component.

- 17 a) With a neat block diagram explain the smart substation architecture. (5)
 - b) Discuss in detail any two sources of harmonics and its impact in distribution (5) system.

Page 2 of 2
