Reg No.:

Name:

¥

Duration: 3 Hours

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSIT

Fourth Semester B. Tech Degree (S,FE) Examination June 2022 (2015 schem

Course Code: EC204

Course Name: ANALOG INTEGRATED CIRCUITS (AE, EC)

Max. Marks: 100

PART A

		Answer any two full questions, each carries 15 marks.	Marks
1			
1	a)	Draw a differential pair using BJTs. Explain its operation using small signal and	(10)
		large signal models.	
	b)	Discuss the use of current sources in the operation of differential amplifiers.	(5)
2	a)	Draw and explain the internal block diagram of an operational amplifier.	(5)
	b)	List down the parameters of an Op-amp and mention their ideal values.	(5)
	c)	Explain the importance of negative feedback in Op-amp based circuits,	(5)
3	a) -	Draw the circuit of a non-inverting amplifier and derive an expression for its	(9)
		voltage gain. Obtain its input and output resistances.	
	b)	Design a circuit with inputs V_1 , V_2 and V_3 to get $V_{out} = -(2V_1 + V_2 + 5V_3)$.	(6)
		PART B	
		Answer any two full questions, each carries 15 marks.	
4	a)	With necessary diagrams, explain the working of an active integrator. Derive the	(11)
		expressions for its -3 dB frequency and unity gain frequency.	
	b)	Explain the working of a logarithmic amplifier.	(4)
5	a)	Draw the circuit diagram, explain the working of a Wien-bridge Oscillator using	(10)
		Op-amp, and derive the expression for its frequency of oscillation.	
	b)	Design a Wien-bridge oscillator for a frequency of 2 KHz.	(5)
6	a)	Draw the circuit diagram and explain the working of a triangular wave generator.	(10)
		Derive an expression for its output frequency.	
	b)	Design a triangular wave generator for a frequency of 1 KHz.	(5)
*		PART C	
		Answer any two full questions, each carries 20 marks.	

a) Draw and explain the internal block diagram of IC 555 timer. (6) 7

Page 1 of 2

02000EC204052001

ŧ.	(b)	Draw the circuit and explain the working of an astable multivibrator using 555.	(10)
	n N	Derive an expression for its output frequency.	
	c)	Design an astable multivibrator using 555, for a frequency of 1 KHz with a duty cycle of 50%.	(4)
3	a)	Draw the functional block diagram of PLL and explain its operation. Define the	(9)
		terms lock range, capture range and free running frequency of PLL.	
	b)	Explain how PLL is used for frequency multiplication?	(5)
	c)	Draw and explain the functional block diagram of IC 723 voltage regulator.	(6)
)	a)	What are the specifications of data converters?	(6)
C	b)	Draw the schematic and explain the working of a 4-bit weighted resistor D/A	(8)
		converter.	
	c)	Explain the working of a successive approximation A/D converter.	(6)

(

1

1