APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S1 (S,FE) S2 (S) Examination May 2022 (2015 Scheme)

Course Code: MA101 Course Name: CALCULUS

Max. Marks: 100 **Duration: 3 Hours** PART A Answer all questions, each carries 5 marks. Marks Examine the convergence of $\sum_{k=1}^{\infty} \frac{1}{(\ln(k+1))^k}$ (2) b) Find the Taylor series expansion of $f(x) = x\cos x$ at $x = \pi$, upto third degree (3) Compute the total differential dz of $z=xe^{y^2}$. **(2)** b) Find the slope of the surface $z = \sqrt{3x + 2y}$ in the y-direction at the point (4,2) (3)3 a) Find the velocity and acceleration at time t=2 of a particle moving along the (2)curve $\mathbf{r}(t) = ti + \frac{1}{2}t^2j + \frac{1}{3}t^3k$. b) Find the normal to the surface yz+xz+xy=c at the point (-1,2,3). (3)Evaluate $\iint \int e^{x+y+z} dx dy dz$ (2)ÛÛÛ Evaluate $\iint_{-\infty}^{\infty} \frac{\sin x}{x} dx dy$ where R is the triangular region bounded by the x (3)axis y = x and x = 1. 5 a) Find the value of constant c so that $\bar{F} = (3x - 4y)\bar{\iota} + (cy - 3z)\bar{\jmath} + (4y - 5z)\bar{k}$ is (2)solenoidal. b) The function f(x,y) = xy + yz + zx is a potential function for the vector field, (3) \bar{F} . Find the vector field \bar{F} . a) Use divergence theorem to find the outward flux of the vector field $F(x, y, z) = 2x i + 3y j + z^2k$ across the unit cube bounded by the coordinate (2) planes and the planes x = 1, y = 1 and z = 1. b) Using Greens Theorem evaluate $\oint_C y^2 dx + x^2 dy$, C is the square with (3) vertices (0,0), (1,0), (1,1) and (0,1)

00000MA101121802

PART B Module 1

	Module 1	
	Answer any two questions, each carries 5 marks.	
7	Find the interval of convergence and radius of convergence of $\sum_{k=1}^{\infty} \frac{(x-5)^k}{k^2}$	(5)
8	Check the convergence of the infinite series $\sum_{k=1}^{\infty} \frac{2^k k!}{k^k}$.	(5)
9	Check the convergence of the alternating series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1} (k+3)}{k(k+1)}$.	(5)
	Module 1I Answer any two questions, each carries 5 marks.	
10	Let f be a differentiable function of one variable, and let w = f(u), where u =	
	x+2y+3z. Show that $\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z} = 6 \frac{dw}{du}$.	(5)
11	Find the local linear approximation $L(x,y)$ of $f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}$ at the point	
-	P(4,3). Compare the error in the approximation to f by L at the point	(5)
ě	Q(3.92,3.01) with the distance between P and Q.	
12	Locate all relative extrema and saddle points of $f(x, y) == 4xy - x^4 - y^4$	(5)
	Module 1II	
	Answer any two questions, each carries 5 marks.	
13	Find the directional derivative of $f(x,y) = \sqrt{xy}$ at (1, 4) in the direction of	(5)
	the unit vector that makes an angle $\pi/3$ with positive x-axis.	
14	A particle moves along a curve $x = 2t^2$, $y = t^2 - 4t$, $z = 3t - 5$ where t is the time. Find the component of acceleration at time $t = 1$ in the direction of $\vec{i} - 3\vec{j} + 2\vec{k}$	(5)
15	The motion of a particle is given by $\mathbf{r}(t)=\mathbf{t}\mathbf{i}+2t^2\mathbf{j}+3t\mathbf{k}$. Compute	
	a) Scalar and vector tangential component of acceleration at t=1.	(5)
	b) Scalar and vector normal component of acceleration at t=1	
	Module 1V	
	Answer any two questions, each carries 5 marks.	
16	Use double integral to find the area of the region enclosed between the parabola $v^2 = -x$ and the line $4y - x = 5$.	(5)
17	Evaluate $\int_0^1 \int_{4x}^4 e^{-y^2} dy dx$; by reversing the order of integration.	(5)
18	Find the volume of the solid in the first octant bounded by the coordinate	(5)
	planes and the plane $x+2y+z=6$	

00000MA101121802

Module V

Answer any three questions, each carries 5 marks. 19 If $\nabla \emptyset = 2xyz^3i + x^2z^3j + 3x^2z^2yk$ find \emptyset (5) 20 Use line integrals to find the area of the triangle with vertices (0,0), (3,0), (0,2)

Evaluate
$$\int_c xdx - yzdy + e^zdz$$
 where C is given by $x = t^3$, $y = -t$, $z = t^2$, $1 \le t \le 2$ (5)

Find the work done by the force
$$\bar{F} = 2xy^3 \bar{\iota} + (1 + 3x^2y^2)\bar{\jmath}$$
 along any path joining (0,0) and (1,2) (5)

Show that
$$\int_{(0,0)}^{(3,2)} 3x^2 e^y dx + x^3 e^y dy$$
 is independent of path. Hence evaluate
$$\int_{(0,0)}^{(3,2)} 3x^2 e^y dx + x^3 e^y dy$$
 (5)

Module VI

Answer any three questions, each carries 5 marks.

- Using Gauss divergence theorem , evaluate $\iint_s F. nds$ for $F = (x^2 yz)i + (y^2 xz)j + (z^2 xy)k$ taken over the rectangular parallelepiped enclosed (5) by x = 0, x = a, y = 0, y = b, z = 0, z = c
- Use Stoke's theorem to evaluate $\int_c (yzdx + +zxdy + xydz)$ where C is the curve $x^2 + y^2 = 1$, $z = y^2$ (5)
- Using Green's theorem evaluate $\int_C (xy + y^2)dx + x^2 dy$ where C is the boundary of the region bounded by $y = x^2$ and $x = y^2$ (5)
- Find the mass of the lamina that is the portion of the cone $z = \sqrt{x^2 + y^2}$ between z = 1 and z = 3 if the density is $\phi(x, y, z) = x^2z$ (5)
- Evaluate the surface integral $\iint_{\sigma} f(x,y,z) ds$ where f(x,y,z) = xy, σ is the portion of the plane x + y + z = 2 in the first octant. (5)
