01000PH100092002

Reg No.:

B

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S1 (S,FE) S2(S) / S2 (FE) Examination May 2022 (2015 Scheme

Course Code: PH100 Course Name: ENGINEERING PHYSICS

PART A

Max. Marks: 100

Duration: 3 Hours

Marks Answer all Questions. Each question carries 2 Marks 1 What is meant by resonance in forced oscillation? Give one example. (2)2 Define wavelength and wave velocity of a wave. (2)3 What are Antireflection coatings? (2)4 Give Rayleigh's criterion for the limit of spectral resolution. (2)What is Kerr effect? (2)5 What are high temperature superconductors. Give one example. (2)6 7 State Heisenberg's Uncertainty principle. (2)(2)8 Distinguish between macrostates and microstates. 9 Define absorption coefficient of sound for a surface? (2)10 Mention any two methods to detect ultrasonic sound. (2)11 Write any four properties of laser. (2)12 List any four advantages of optical fibres over conventional transmission lines. (2)

PART B

Answer any 10 questions. Each question carries 4 Marks

- 13 Derive the differential equation of a forced harmonic oscillator. (4)
- 14 A piece of wire **50 cm** long is stretched by a load of **2 kg** and has a mass of **1.42g**. Find (4) the fundamental frequency of the string.
- 15 The diameter of the 10th and 20th Newton's rings formed with a plano convex lens and (4) an optically plane glass plate are 0.415 x 10⁻² m and 0.616x 10⁻²m respectively. If the wavelength of the interfering light is 5893Å, calculate the radius of curvature of the lens.
- A parallel beam of light is incident normally on a plane transmission grating having (4)
 6000 lines/cm and a second order spectral line is observed at an angle of 30° Calculate the wavelength of light used.
- 17 Calculate the thickness of a mica sheet required for making a quarter wave plate (4)

01000PH100092002

	for $\lambda = 550$ nm. The refractive indices for the ordinary and extraordinary rays in \sim	
	mica are 1.584 and 1.594 respectively.	
18	Give any four applications of superconductors.	(4)
19	What are operators in Quantum mechanics? Obtain the energy operator.	(4)
20	State the any four postulates of Bose-Einstein statistics.	(4)
21	The area of interior surface of an auditorium is 3300m ² . Its reverberation time is	(4)
	1.4 s. If the average absorption coefficient of interior surface is 0.42 sabin, Find	
201 1	the volume of the auditorium.	
22	A nickel rod of length 8 cm is used in a magnetostriction oscillator. Calculate the	(4)
K	frequency of ultrasonic waves generated. Young's modulus of nickel = $2.07 \times 10^{11} \text{ Nm}^{-2}$	
	and density of nickel = 8900 kg/m ³	
23	What are the advantages of holography over photography?	(4)
24	Explain the construction and working of an LED.	(4)
	PART C	
	Answer any three questions. Each question carries 6 Marks	
25	Obtain an expression for the velocity of transverse waves in a stretched string.	(6)
26	Derive the expression for the bandwidth of interference fringes in an air wedge	(6)
	and describe an experiment to determine the diameter of a thin wire using air	
	wedge.	
27	Describe the construction of Nicol prism. Show that it can be used as a polarizer	(6)
	and an analyser.	
28	Obtain the time dependent and independent Schrodinger wave equations.	(6)
	PART D	
	Answer any three questions. Each question carries 6 Marks	
29	Explain reverberation and reverberation time. Write the significance of	(6)
8°	reverberation time. How is reverberation different from echo?	
30	What is inverse piezoelectric effect? With the help of a circuit diagram explain	(6)
	the production of ultrasonic waves using a piezoelectric oscillator.	
31	Explain the construction and working of Ruby laser.	(6)
32	Define numerical aperture of an optical fibre. With the help of a diagram derive	(6)
2	the expression for Numerical aperture of a step index fibre.	

1
