1100CST393122103

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech (Hons) Degree Examination December 2021 (2019 admission)

Course Code: CST393

Course Name: CRYPTOGRAPHIC ALGORITHMS

PART A

Max. Marks: 100

Duration: 3 Hours

Pages:

		(Answer all questions; each question carries 3 marks)	Marks
1	۹.	Differentiate between computationally secure cipher and unconditionally secure	3
		cipher.	
2		"Passive attacks are easier to prevent but difficult to detect. On the other hand,	3
		active attacks are difficult to prevent but easy to detect". Justify this assertion.	
3		Illustrate the key expansion procedure of IDEA algorithm.	3
4		Identify the drawbacks of double DES and why do we go for triple DES.	3
5		Explain how knapsack system is cracked.	3
6		Given p=7, q=11, e=17, M=8, perform encryption using RSA algorithm.	3
7		List four general categories of schemes for the distribution of public keys.	3
8		Demonstrate how simple secret key distribution is prone to man in the middle	3
		attack.	
91		If the length of the message is 6143 bits, how many padding bits are needed in	3
		SHA?	
10		List out the required properties of a good Hash function.	3
		PART B	
		(Answer one full question from each module; each question carries 14 marks)	
11	a)	Module -1	6
11	a)	an exhaustive key search to break this Casser sinher	6
	b)	What are the different tames of emotional time table 1.2	
10	0)	what are the different types of cryptanalytic attacks?	8
12	a)	The encryption key in a transposition cipher is $(3,1,4,5,2)$. Perform encryption	6
		and decryption for the message "meet me after the toga party". Add a bogus	
		character at the end to make the last group the same size as the others.	
	b)	Explain OSI Security architecture model with suitable diagrams.	8

1

1100CST393122103

. 5

.

1

Module -2

			10		
13	a)	Explain the Key expansion in AES algorithm with a neat sketch.	10		
	b)	Differentiate between confusion and diffusion.	4		
14	a)	Describe single round of DES algorithm with necessary diagrams.	8		
	b)	Discuss the stream cipher RC4 in detail.	6		
3		Module -3			
15	a)	Explain RSA algorithm. Prove that the RSA decryption indeed recovers the	8		
		original plaintext.			
61	b)	Consider a Diffie-Hellmann scheme with a prime $q=23$ and a primitive root $\alpha=7$.			
		Users private key are $X_A=3$ and $X_B=5$.			
		i. Find the public keys.			
		ii. Find the value of symmetric key.			
		iii. Write the algorithm			
16	a)	Discuss the encryption/decryption procedures using Elliptic Curve cryptography.	8		
	b)	With the following parameters, implement El-Gamal Encryption/ Decryption	6		
		scheme.			
		• Prime Number,p =11			
		• Primitive root of p=g=2			
		• User A's private key, x=5			
		• Message to be sent by User B to User A, M=3			
		 Random number chosen by User B for encryption, k=7 			
		Determine .			
		i. Public key y of A			
		ii. Ciphertext created by the sender B			
		iii. Show how the plaintext is extracted from ciphertext by user A			
		•			
		Module -4			
17	a)	Explain secret key distribution with confidentiality and authentication.	8		
	b)	What are the key components of a PKI? Briefly describe each component.	6		
18	a)	Define a session key and show how a KDC can create a session key between			
		Alice and Bob.	8		
			•		

1100CST393122103

- b) Describe the following
 - i. Backup Keys

	-			
11.	Compr	omised	Ke	ys

Module -5

à

6

19	a)	Illustrate the working of SHA-512 algorithm with necessary diagrams.	10
	b)	Distinguish between HMAC and CMAC.	4
20	a)	Discuss message authentication with MAC.	8
	b)	Describe birthday attack? Explain how it affects the security of hash functions.	6