Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY Fourth Semester B. Tech (Minor) Degree Examination July 2021 (2019 admission)

Course Code: MRT282

Course Name: FUNDAMENTALS OF ANALOG AND DIGITAL ELECTR

Max. Marks: 100

PART A

Duration: 3 Hours

(Answer all questions; each question carries 3 marks) Marks

1	With suitable diagram explain the working of E MOSFET	3
2	The feedback factor of an oscillator circuit is 0.02. Calculate open loop gain	3
	and the gain with feedback satisfying Barkhausen condition for oscillation	
3	Differentiate the ideal and practical characteristics of an op-amp	3
4	For the amplifier shown below, calculate Vo	3

Given that Vi= 2 V, R1 = 10k Ω , R2 = 47 k Ω , R3= 5 k Ω , and R4= 10 k Ω . 5 Write short note on non-sinusoidal oscillators. 3 6 3 What are the characteristics of a VCO used in PLL 7 3 Implement the Boolean function $F(A,B,C,D) = \Sigma m(1,3,4,11,12,13,14,15)$ using 8:1 multiplexer. 8 Explain with figure how NAND gate can be used as universal gate 3 9 Explain parallel in serial out shift register 3 3 10 Write the difference between synchronous and asynchronous counter

Page 1 of 2

02000MRT282072101

PART B

(Answer one full question from each module, each question carries 14 marks) Module -1

11	a)	Draw the circuit for grounded emitter amplifier using NPN transistor and	10
		explain its working in detail.	
	b)	Sketch and explain the construction of N- channel JFET	4
12	a)	With neat circuit diagram explain RC phase shift oscillator. Mention its	10
		advantages and disadvantages.	
	b)	Mention the two conditions that need to be satisfied for the oscillations to build	4
×.		up and sustain.	
		Module -2	
13		Explain op-amp as differentiator. Draw the frequency response of ideal	14
		differentiator. Mention the disadvantage of an ideal differentiator.	
14	a)	Explain with help of circuit diagram an op-amp used as inverting comparator	10
		and non-inverting comparator.	
	b)	Explain sample and Hold circuit with diagram.	4
		Module -3	
15	a)	Discuss the principle of operation of PLL	7
	b)	Explain the active band pass filter. sketch its the frequency response	7
16	a)	With necessary waveform explain the working of free running multivibrator	10
3	b)	Mention the advantages and disadvantages of an Astable multivibrators	4
		Module -4	
17		Explain full adder in details. Implement the full adder circuit using basic gates	14
18		Simplify the logic function $F(A, B, C, D) = \Sigma m(0, 1, 2, 5, 6, 8) + d(3, 4, 7, 14)$	14
		using K-map in SOP and POS form. Implement the simplified function using	
		logic gates.	
		Module -5	
19		Module -5 With logic diagram and truth table explain the working of clocked J K Flip	14

20 Design a synchronous decade counter using J K Flip Flop

1

14
