Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY.

Third Semester B.Tech (Minor) Degree Examination December 2021 (2020 admission)

Course Code: RAT281 Course Name: BASICS OF ROBOTICS

Max. Marks: 100

Duration: 3 Hours

			PART A	
			Answer all questions. Each question carries 3 marks	Marks
*	1		Explain reach and stroke of a robotic manipulator with necessary diagrams.	(3)
	2		Compare Point-To-Point with Continuous Path Planning.	(3)
	3		"Actuators are like the muscles in the human body". Justify this statement.	(3)
	4		A strain gauge of gauge factor 2 and resistance of the unreformed wire 100 Ω is	(3)
			used to measure the acceleration of an object of mass 3 kg. If the strain is 10^{-6} ,	
			cross sectional area = 10 mm^2 and Young's modulus = $6.9 \times 10^{10} \text{ N/m}^2$, compute	
			the acceleration of the object.	
	5		Differentiate between active and passive grippers.	(3)
	6		Identify the features of a SCARA robot that make it suitable for assembly.	(3)
	7		Describe the Kinematic Parameters related to robotic arms.	(3)
	8		Distinguish between motion planning in joint space and cartesian space.	(3)
	9		Compare linear and non-linear control.	(3)
	10		Apply Lagrangian Mechanics to dynamic modelling of robots.	(3)
			PART B	
		1	Answer any one full question from each module. Each question carries 14 marks	
			Module 1	
	11		Explain with necessary diagrams the considerations in the choice of a robotic	(14)
			manipulator for an application.	
	12	a)	Explain with a neat diagram, the typical anatomy of a robotic manipulator,	(8)
		b)	Justify the use of robots in any three industrial applications.	(6)
			Module 2	
	13	a)	Compare electric, hydraulic and pneumatic actuators.	(7)
		b)	Explain the working of typical hydraulic actuator with necessary diagrams.	(7)

a

0800RAT281122003

- 14 a) Explain how we can apply Pulse Width Modulation PWM to control the speed (7) of a dc motor.
 - b) Choose a non-contact sensor for sensing the presence of both metallic and non- (7) metallic objects with justification for the choice and necessary diagrams.

Module 3

- a) Select a robot configuration suitable for the task of reaching into small openings (7) or working on cylindrical surfaces, e.g., welding pipes with explanation of the choice and necessary diagrams.
 - b) Compare the four basic robotic arm configurations. (7)
 - Explain the various types of grippers with necessary diagrams. (14)

Module 4

< 16

- 17 a) Suppose the mobile coordinate frame M is rotated about the fixed coordinate (7) frame F by an angle 180⁰ about the y (f²) axis, followed by a rotation by an angle 90⁰ about the x (f¹) axis, followed by a rotation of -90⁰ about the y (f²) axis. If p is a point whose coordinates in the mobile M frame are [1, 1, 0]^T. Obtain the composite rotation matrix R and the coordinates of p with respect to the fixed frame F.
 - b) Obtain the forward kinematic model of a two link RP planar robot with (7) intersecting joint axes.
- 18 a) It is desired to have the third joint of a 6-axis robot go from initial angle of 15⁰ (7) to a final angle of 45⁰ in 6 seconds. Plan a third-order (cubic) polynomial for this requirement
 - b) Justify why the LSPB method is preferable to the Straight-Line Trajectory (7) method of Trajectory Planning.

Module 5

19	a)	Derive the closed loop transfer function of a PID controlled robotic manipulator	(10)
		with explanation and necessary diagrams.	
	b)	Examine the stability of the above controller,	(4)
20	a)	Develop the performance and stability considerations of feedback-controlled	(7)
	*	robots.	
	1 \		

b) Derive the equations of motion for a 2-DOF 2R planar manipulator robot arm, (7)
