0800ECT203122005

Reg No.:____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree Examination December 2021 (2019 scheme)

Course Code: ECT203

Course Name: LOGIC CIRCUIT DESIGN

Μ	ax. N	Marks: 100 Duration: 3	8 Hours
		PART A Answer all questions. Each question carries 3 marks	Marks
¢	1	Convert $(231.45)_8$ to equivalent decimal and binary	(3)
	2	Give a brief description of keywords in Verilog	(3)
	3		(3)
		Reduce the expression $F = \overline{AB} + \overline{A} + AB$ using De-Morgan's theorem	
	4	Write a Verilog code for implementing a NOR gate	(3)
	5	Explain the working of a multiplexer	(3)
	6	Write a Verilog code for half subtractor	(3)
	7	Convert a JK flipflop to T flipflop	(3)
	8	Write a Verilog code for implementing D flipflop	(3)
	9	Define noise-margin	(3)
	10	Define propagation delay and power dissipation	(3)
•		PART B Answer any one full question from each module. Each question carries 14 marks	
		Module 1	
	11	(a)Perform the following operations	(6)
		(i) $(A5C)_{16} + (8E4)_{16}$ (ii) $(175.6)_8 - (47.7)_8$	
		(b)What is Hamming code? The message 1100110 is coded in 7-bit even parity	(8)
		Hamming code which is transmitted through a noisy channel. Decode the	
		message assuming that a single error occurred in the codeword	
	12	(a) Find 11001-10001 using 1's and 2's complement arithmetic	(8)
		(b)Explain the operators in Verilog	(6)
		Module 2	
	13	(a) Obtain the canonical POS expression of $F(A, B, C) = (A + \overline{B})(B + C)(A + \overline{C})$	(5)
		(b) Simply the expression $Y=\prod M(0,1,4,5,6,8,9,12,13,14)$ using K-Map and	
		implement the simplified expression using NOR logic.	(9)

1

Pages: 2 CATION

(9)

0800ECT203122005

14	For the logical expression $F = A + AB + ABD + ABD + C$	(14)
	(i) Obtain Canonical SOP expression	
	(ii)Simplify the expression using K-Map	
	(iii)Write Verilog code for the simplified expression	
	Module 3	
15	(a)Design a full adder circuit	(8)
	(b) Write a Verilog code for 1:4 demultiplexer	(6)
16	(a)Implement the logic function $f(A,B,C)=\sum m(0,2,3,5)$ using	(8)
	(i) 8:1 MUX (ii) 4:1 MUX	
	(b)Design a octal to binary encoder	(6)
	Module 4	
17	(a)Explain the operation of a JK flip-flop using NAND gates	(6)
	(b)Explain the operation of a 4-bit Johnson counter with	
	truth table and waveforms	(8)
18	(a)Design a mod-6 synchronous up-counter using JK flip-flop	(7)
	(b)Explain a PISO shift register using LOAD /SHIFT	(7)
	Module 5	
19	(a)Compare TTL & CMOS logic families in terms of fan-in, fan-out, supply	(5)
	voltage, propagation delay and noise margin	
	(b)Draw the circuit and explain the operation of transistor level TTL NAND	(9)
	gate	
20	(a)Draw the circuit diagram of a transistor level TTL Inverter and explain the	(5)
	working	
	(b)Draw the circuit and explain the operation of transistor level CMOS NAND	(9)
	gate	

.

1

1
