0100MAT101032204

Reg No.:

Name:

Duration: 3 Hours

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSIT

First Semester B.Tech Degree Examination December 2021 (2019 scheme)

Course Code: MAT101

Course Name: LINEAR ALGEBRA AND CALCULUS

(2019 -Scheme)

Max. Marks: 100

۹.

1

2

3

4

5,

6

7

8

9

10

1

PART A

Answer all questions, each carries 3 marks	Marks
Find the rank of the matrix $\begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & -4 \\ 0 & 4 & 0 \end{bmatrix}$	(3)
Find the Eigen values of the matrix $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$. What are the Eigen values	(3)
of A^2 , A^{-1} without using its characteristic equation.	
If $z = \frac{xy}{x^2 + y^2}$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.	(3)
Show that the equation $u(x, t) = sin(x - ct)$, satisfies wave equation	(3)
$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}.$	
Evaluate $\int_0^3 \int_0^2 \int_0^1 xyz dx dy dz$.	(3)
Find the mass of the lamina with density $\delta(x, y) = x + 2y$ is bounded by the	(3)
x -axis, the line $x = 1$ and the curve $y^2 = x$.	
Find the rational number represented by the repeating decimal	(3)
5.373737	
Examine the convergence of $\sum_{k=1}^{\infty} \frac{k^2}{2k^2+3}$	(3)
Find the Taylor series expansion of $f(x) = sin\pi x$ about $x = \frac{1}{2}$	(3)
If $f(x)$ is a periodic function with period 2π defined in $[-\pi, \pi]$. Write the	(3)

Euler's formulas a_0, a_n, b_n for f(x).

0100MAT101032204

PART B

Answer one full question from each module, each question carries 14 marks. MODULE 1

11 a Solve the following linear system of equations using Gauss elimination method (7) x + 2y - z = 3 3x - y + 2z = 12x - 2y + 3z = 2

(7)

Find the eigenvalues and eigenvectors of $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$

b

1

12 a Solve the following linear system of equations using Gauss elimination method. (7) 2x - 2y + 4z = 0 -3r + 3y - 6z + 5w = 15

$$-3x + 3y - 6z + 5w = 1$$

$$x - y + 2z = 0$$

^b Find the matrix of transformation that diagonalize the matrix $A = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix}$. (7) Also write the diagonal matrix.

MODULE 2

- a The length and width of a rectangle are measured with errors of at most 3% and (7)
 4% respectively. Use differentials to approximate the maximum percentage
 error in the calculated area.
 - b Find the local linear approximation L of f(x, y, z) = xyz at the point P(1,2,3). (7) Compute the error in approximation f by L at the point Q(1.001, 2.002, 3.003).
- 14 a If w = f(P, Q, R) where P = x y, Q = y z, R = z x prove that (7) $\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z} = 0.$

b Locate all relative extrema and saddle points of $f(x, y) = 4xy - x^4 - y^4$ (7)

MODULE 3

15 a Find the area bounded by the parabolas $y^2 = 4x$ and $x^2 = \frac{y}{2}$. (7)

b Evaluate
$$\int_{-2}^{2} \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} e^{-(x^2+y^2)} dx \, dy$$
 using polar coordinates. (7)

16 a Evaluate
$$\int_0^1 \int_y^1 \frac{x}{x^2 + y^2} dx dy$$
 by reversing the order of integration. (7)

Page 2 of 3

0100MAT101032204

b Use triple integral to find the volume of the solid within the cylinder $x^2 + y^2 = (7)$ 9 and between the planes z = 1 and x + z = 5.

MODULE 4

a Test the convergence of (i)
$$\sum_{k=1}^{\infty} \frac{3k^3 - 2k^2 + 4}{k^7 - k^3 + 2}$$
 (ii) $\sum_{k=1}^{\infty} \frac{k^k}{k!}$ (7)

^b Test whether the series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{\sqrt{k+1}}$ is absolutely convergent or (7) conditionally convergent

¹⁸ a Test the convergence of the series
$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + \dots$$
 (7)

Test the convergence of (i)
$$\sum_{k=1}^{\infty} \left(\frac{k}{k+1}\right)^{k^2}$$
 (ii) $\sum_{k=1}^{\infty} \frac{7^k}{k!}$ (7)

MODULE 5

19 a Find the Fourier series expansion of $f(x) = x - x^2$ in the range (-1, 1). (7)

b Obtain the half range Fourier cosine series of $f(x) = e^{-x}$ in 0 < x < 2 (7)

20 a Find the Fourier series expansion of $f(x) = x^2$ in the interval $-\pi < x < \pi$. (7)

Hence show that $1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$

17

b

b

Obtain the half range Fourier sine series of $f(x) = \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} < x < \pi \end{cases}$ (7)