Name: Reg No:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSIT

Ph.D COURSE WORK EXAMINATION DECEMBER 2021

Department of Mathematics

07DM 8002 Graph Theory

Time:3 hours Max. Marks: 60

Answer all six questions. Part 'a' of each question is compulsory.

Answer either part 'b' or part 'c' of each question

Q.no.	Module 1	Marks
1a	Define self-complementary graphs. Give two examples.	4
	Answer b or c	
b	Define Eulerian graph. State and prove characterisation of Eulerian graphs.	5
C	Define Hamiltonian graph. State and Prove Dirac's theorem.	5
Q.no.	Module 2	Marks
2a	Prove that a tree with n vertices has n-1 edges.	4
•	Answer b or co	
b	Prove that Kuratowski's second graph is non-planar without using Euler's theorem	5
C	State and prove Euler's theorem for planar graphs.	5
Q.no.	Module 3	Marks
3a	Define path matrix and circuit matrix of a graph with suitable examples.	4
Answer b or c		
b	Write Kruskal's algorithm. Find a minimal spanning tree using Kruskal's algorithm for the following graph.	5

Write Dijkstra's algorithm and find a shortest path between all vertices using it for the graph in the previous question.

Q.no.	Module 4	Marks
4a	Define line graph of a graph. Draw the line graph of K ₄ .	4
	Answer b or c	
b	Prove that every tree with two or more vertices is 2-chromatic.	5
С	Define independence number and covering number of a graph with examples.	5
Q.no.	Module 5	Marks
5a	Define degree of a vertex, isolated vertex and pendant vertex in a hypergraph.	5
	Answer b or c	
b د	Define conformal hypergraph, critical hypergraph and transversal hypergraph.	7
С	Discuss connectedness in hypergraphs. Is every linear hypergraph connected? Justify	7
Q.no.	Module 6	Marks
6a	Define domination number and roman domination number of a graph. Is there any relation between them?	5
	Answer b or c	
b	Define magic labelling and anti-magic labelling of a graph.	7
С	Discuss set-labelling and topological set-labelling in graphs.	7