APJ ABDULKALAM TECHNOLOGICAL UNIVERSITY

08 PALAKKAD CLUSTER

Q. P. Code: PE0821111-I

(Pages: 3)

Name:

Reg. No:

FIRST SEMESTER M.TECH. DEGREE EXAMINATION DECEMBER 2021

Branch: Electrical and Electronics Engineering

Specialization: Power Electronics

08EE6211 Applied Mathematics

(Common to PE)

Time: 2 hour 15 minutes

Max.Marks: 60

Answer all six questions.

Modules 1 to 6:Part 'a' of each question is compulsory and answer either part 'b' or part 'c' of each question.

Q. No.	Module 1	Marks
1.a	Check whether $S=\{x_1=(1,2,-3),x_2=(1,-3,2),x_3=(2,-1,5)\}$ is a set of linearly independent vectors in \mathbb{R}^3	3
	Answer b or c	
b	Check whether $S=\{x_1=(2,6,3), x_2=(9,1,0), x_3=(1,2,7)\}$ is a basis of \mathbb{R}^3	6
c	Let W be the subspace of \mathbb{R}^4 spanned by $x_1 = (1, 2, 1, -2), x_2 = (2, 3, 2, -3)$ and $x_3 = (2, 5, 2, -5)$. Find a basis for W and the dimension of W	6
Q. No.	Module 2	Marks
, 2.a	Solve the following differential equation	3
	$rsin\theta d\theta + (r^3 - 2r^2cos\theta + cos\theta) dr = 0$	
	Answer b or c	
b	Solve $y'' + 4y' + 4y = 3\sin x + 4\cos x$, $y(0) = 1$ and $y'(0) = 0$	6
c	Solve $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + y = \log x \left[\frac{\sin(\log x) + 1}{x} \right]$	6
Q. No.	Module 3	Marks

3.a Obtain the fourier sine transform of
$$f(x) = \sin x \text{ for } 0 < x < a$$
$$= 0 \text{ for } x > a$$

3

Answer b or c

Expand
$$f(x) = \sqrt{1 - \cos x}$$
, $0 < x < 2\pi$ in a fourier series. Hence evaluate
$$\frac{1}{13} + \frac{1}{35} + \frac{1}{5.7} + \cdots$$

Find the Fourier series expansion for f(x) if $f(x) = -\Pi$ for $-\Pi < x < 0$

6

$$= x \text{ for } 0 < x < \Pi$$

Deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\Pi^2}{8}$

Q. No.

Module 4

Marks

4.a Find the constants a, b, c, d and e if
$$f(z) = (ax^4 + bx^2y^2 + cy^4 + dx^2 - 3(2y^2) + i(4x^3y - exy^3 + 4xy)$$
 is analytic

Answer b or c

b Evaluate using Cauchy's integral formula

6

i)
$$\oint \frac{e^{2z}}{(z+i)^4} dz$$
 over the circle $|z| = 3$

ii)
$$\oint \frac{\cos \pi z}{z^2 - 1} dz$$
 around a rectangle with vertices $2 \pm i$, $-2 \pm i$

Find the Taylor's series expansion of $f(z) = \frac{1}{(z+1)^2}$ about z = -i

6

Q. No.

Module 5

Marks

5.a Find the Laurent's expansion of
$$f(z) = \frac{7z-2}{z(z+1)(z-2)}$$
 in the region $1 < z+1 < 3$

Answer b or c'

b i) Determine the residue at each pole of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$

8

- Hence evaluate $\oint f(z)dz$ over the circle |z| = 2.5
- ii) Evaluate using residue theorem

$$\oint \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz \text{ over the circle } |z| = 3$$

- i) Find the bilinear transformation which maps the points z = 1, i, -1 on to the points w = i, 0, -i. Hence find image of |z| < 1
 - ii) Under the transformation $w = \frac{1}{z}$, find the image of |z i| = 2
- Q. No. Module 6 Marks List the techniques for solving unconstrained minimization problems? 6.a 4 Answer b or c b Explain Random Walk method with direction exploitation of solving unconstrained minimization method with a neat flow chart. 8 Explain Random jumping method with a neat flow chart for the general C 8 iterative scheme of unconstrained minimization problem